DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DOE/PC/91040-69

ADVANCED DIRECT LIQUEFACTION CONCEPTS for PETC GENERIC UNITS Phase II

Quarterly Technical Progress Report for Period April through June 1996

by

University of Kentucky Center for Applied Energy Research

CONSOL Inc.

Hydrocarbon Technologies, Inc.

LDP Associates

MASTER

August 1996

Prepared for
The U. S. Department of Energy
Under Contract No.
DE-AC22-91PC91040

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

INDEX

INDEX	ii
SUMMARY	. 1
SECTION ONE - UK/CAER	1-1
WORK PERFORMED	1-2
TASK 2.1 LABORATORY SUPPORT	1-2
Task 2.1.1 Development of a Catalyst Screening Test (CST)	1-2
Activity of ALC-1 Catalyst in CST	1-3
Task 2.1.2 Activation of Impregnated Metal Catalysts	1-5
Task 2.1.3 Optimizing Metal Concentration in the Catalyst	1-5
Resid Concentration in Ashy Resid	1-10
Phosphomolybdic acid as catalyst precursor	1-11
Ammonium tetrathiomolybdate as catalyst precursor	1-11
Task 2.1.5 Coal Cleaning by Column Flotation	1-12
Beneficiation studies of Black Thunder coal	1-12
Introduction	1-12
Objectives	1-13
Results	1-13
Froth flotation	1-14
Column flotation studies	1-14
Conclusions	1-14

SECTION TWO - CONSOL

SECTION THREE - HYDROCARBON TECHNOLOGIES, INC.

SECTION FOUR - LDP ASSOCIATES

SUMMARY

TASK 2.1 LABORATORY SUPPORT (UK/CAER)

Catalyst Development

A catalyst screening test (CST) was developed to evaluate the activity of various catalyst precursors for their liquefaction activity in a solvent comprising the solids-free components of a recycle solvent generated at Wilsonville, namely a ROSE SR V-130 deashed resid from period A and V-1074 heavy distillate from period B. Since the deashed resid has an elemental composition very nearly the same as in the solids-free fraction of the recycle solvent, the reactivity of these two resids may be nearly the same. In this test, since the relative amounts of distillate, deashed resid and dry coal are nearly the same as in Run 263J, the overall composition should approximate the feed stream used in the Wilsonville pilot plant except for the absence of the solids component. Removing the solids from the reaction mixture should simplify the interpretation of the results since normally a considerable amount or recycled catalyst is contained in this fraction.

An indication of an upper limit of resid conversion that might be expected in this test was obtained in a run in which crushed AKZO AO-60 was added to BT coal. The catalyst was added at a level of 10 wt% Mo+Ni on a dry coal basis. After 30 min at 440 °C, the 524 °C+ (975 °F+) resid conversion was 39.7% and coal conversion (THF) was 95.8%. Thus far, this is the highest 30 minute resid conversion that has been observed in this test.

The performance of the catalysts used in ALC-1 Condition #1, i.e. Molyvan A and HTI's proprietary FeOOH/SO₄ catalyst, was determined in the CST in order to have a comparison in our micro reactors. The activity of this catalyst was among the highest we observed for any dispersed catalyst in this test, i.e. 30.3% resid conversion. It was distinctly better than either the Fe or Mo components alone. It was also very sensitive to the presence of H₂S, since neither the Fe or Mo precursors performed well in the absence of H₂S.

Since in the microautoclaves there is no purging during the run, the water partial pressure due to the water in the coal as well as the water associated with the FeOOH catalyst could be affecting the activity of the Fe catalyst. To test this, the HTI FeOOH/SO₄ catalyst was dried before running in the micro reactors. One sample was prepared by calcining at 490°C for 3 h and a second was prepared by drying at 95°C and 250 torr overnight. In both cases the dried materials were humidified before use to assure that adequate water was present to hydrate the surface. The activities of both dried precursors were higher than the starting material indicating that water in these micro reactors will affect activities of the Fe catalysts. Also, a few runs were made to evaluate the use of elemental sulfur as sulfiding agent. Resid conversion when elemental sulfur was used was always lower than when H₂S was used.

In a series of runs, Mo, Ni/Mo and Fe/Mo impregnated coals were pretreated for 30 minute at temperatures from 275 °C to 440 °C and then reacted for 30 minutes at 440 °C. The Mo-only impregnated coals gave better resid conversion than the Fe/Mo impregnated coal. Overall, however,

Ni/Mo gives the best results with enhanced coal dissolution.

The effect of varying the Ni in Ni/Mo impregnated coals was investigated during this reporting period. Ni at levels of 100 and 500 ppm on coals with 500 ppm Mo were run without pretreatment. The higher Ni concentration gave approximately 29% resid conversion versus 27% for the run at 100 ppm. This suggests that the higher Ni concentration can have a beneficial effect. These two Ni concentrations were also evaluated in runs involving 30 min pretreatments at 300 °C. In these runs the 100 ppm Ni impregnated coal have a higher resid conversion (32%) than the 500 ppm coal (28%). With the 30 min pretreatment, a slight decrease in conversion is seen, but hydrogen consumption was found to be the same. In total, the data collected to date suggests that most of the improvements in conversion from added Ni can be accrued at low concentrations

The activity of phosphomolybdic acid impregnated onto coal was quite good giving up to 70% resid conversion (maf coal basis). This was significantly higher than the conversions observed when the solid acid was merely added to the reaction mixture. The experiments also indicate that the amount of water used in the impregnation affected the amount of resid conversion with larger amounts of water favoring higher conversion.

Liquefaction catalysis using ammonium tetrathiomolybdate (ATTM) as a precursor was also evaluated during this reporting period. Both as-received and dry coals impregnated with ATTM gave nearly the same 524 °C+ (975 °F+) resid conversions of 50.9 and 55.6%, respectively, in the presence of H₂S. The corresponding coal conversions were 85 and 89% in the presence of H₂S. Impregnating a coal with 100 ppm Mo from a 1% aqueous solution increases the moisture in the coal feed by less than 3 w%. Runs were also made in the absence of H₂S to determine whether H₂S had an effect on product distribution. Surprisingly, the yield of IOM products were considerably higher in the absence of H₂S, indicating a strong positive dependence on the presence of H₂S.

Coal Cleaning by Column Flotation

Column flotation is an advanced flotation technique which utilizes the conventional froth flotation principles. A low-ash Wyodak Black Thunder coal (80% passing 325 mesh) containing 5.12 wt% ash responded favorably to froth flotation technique. High recovery of combustibles were obtained at a low or moderate ash rejection, suggesting that a majority of ash may be present as 'inherent' ash. Both conventional and column flotation provided a 3.4% ash clean coal at 75% combustible recovery at a ash rejection of about 65%. Experiments were performed on minus 1/4 in crushed coal. An average particle size after 10 minutes grind was about 11 μ m. Froth flotation tests were conducted using a laboratory Denver flotation machine giving a product having an ash content as low as 3.9% and combustible recovery of 52.5%. This was obtained using 2 lb/t of fuel oil and MIBC. From a release analysis it was determined that 3.7% ash clean coal could be obtained at 80% combustible recovery. A 3% ash clean coal could be obtained at only 30% combustible recovery.

Column flotation studies were conducted using a 2-in. I.D., 20-ft. high column. As expected, both ash content and combustible recovery increased with increasing air flow rate. The lowest ash content obtained at 3.5 L/min air flow could be due to experimental error. The ash content of clean coal

remained mostly constant at ~4.5% as wash water rate was increased, however, combustible recovery decreased from 70% to 30%.

The level of ash removal was comparable to the results reported previously with oil agglomeration, especially low pH oil agglomeration which selectively dropped the calcium content in the feed material. However, because there was no selective partitioning of the components in the ash from this column floated coal, there was little incentive to examine this material in a continuous run.

TASK 2.2 LABORATORY SUPPORT (CONSOL)

All CONSOL'S support activities for Run ALC-1 were completed on schedule. This included characterization of materials produced in Sandia's and HTI's hydrotreating and dewaxing work conducted in advance of Run ALC-1; on-site monitoring of Run ALC-1; characterization of the coal-agglomerates produced by CONSOL for Run ALC-1 and analysis the rejected solids and waters to generate elemental and material balances of the agglomeration process; review of HTI's preliminary results from Run ALC-1; and organization of the post-run meeting to discuss Runs ALC-1 and ALC-2.

Activities planned for next quarter include: generate elemental and material balances for the agglomerate production runs; analyze the Run ALC-1 separator overhead water samples to determine if there is unreported carbon, nitrogen and sulfur that may improve the elemental balances; characterize the wax produced in Run ALC-1; evaluate the solvent quality of the Run ALC-1 dewaxed and hydrotreated recycle oils; participate in planning Run ALC-2. The process oil samples collected during Run ALC-1 are being characterized by CONSOL under DOE Contract DE-AC22-94P93054.

TASK 3 CONTINUOUS OPERATIONS/PARAMETRIC STUDIES

TASK 3.3 (HYDROCARBON TECHNOLOGIES, INC.)

The first run ALC-1 was started in mid-April and ran for 28 days being completed on 13 May. Five conditions were run including a reference case, three with oil-agglomerated coal and one to evaluate solvent modification by dewaxing and hydrotreating. In the reference case, Wyodak coal from the Black Thunder mine was processed in an all-slurry mode with a catalyst comprising 1 wt% Fe, as a HTI's proprietary FeOOH/SO₄, and 100 ppm Mo, as Molyvan A. It was run in a recycle mode at a recycle solids/dry coal ratio of 0.20/1 and a coal concentration in slurry of 38%. In Conditions #2-#4, oil agglomerated coal was run at the same solids/dry coal ratio and a slightly lower space velocity. Exceptionally high coal conversions to THF solubles were observed in these conditions. In Condition #5, heavy distillate solvent was dewaxed and then hydrotreated to produce a more hydrogen rich solvent. A draft report for the run was prepared and circulated on 5 June to DOE and all the participants. A number of changes were suggested and a final ALC-1 report will be issued at a later date to be included in a subsequent quarterly report.

TASK 4 CONCEPTUAL PROCESS DESIGN

TASK 4.4 PRELIMINARY TECHNICAL ASSESSMENT (LDP ASSOCIATES)

Most of the activity for this reporting period was in support of ALC-1. Prior to the run a recommendation was made to conduct the pre-ALC-1 dewaxed oil hydrotreating at HTI at the lowest possible severity to minimize cracking of the 343 °C+ (650 °F+) material. This suggestion was based upon an analysis of the results from Sandia. Daily meetings were attended during the course of the run and the operations and results were monitored throughout the run period. Other program participants were kept up to date on activities during those periods when their representatives were not on-site. An elementally balanced material balance procedure was developed to calculate yields, hydrogen consumption, distillate boiling range yields and to estimate distillate product properties for the liquefaction section for the five run conditions. An estimated material balance was also prepared for the distillate solvent dewaxing and hydrotreating condition. A preliminary analysis of the run was provided at the ALC-1 Review Meeting.

SECTION ONE

Center for Applied Energy Research University of Kentucky

WORK PERFORMED

TASK 2.1 LABORATORY SUPPORT (UK/CAER)

Task 2.1.1 Development of a standard catalyst screening test

The development of a catalyst screening test (CST) was discussed in the previous Quarterly Technical Progress Report DOE/PC/91040-64. In this test, catalyst precursors are evaluated for their liquefaction performance in a solvent comprising the solids-free components of a recycle solvent generated in Wilsonville Run 258, namely, ROSE SR V-130 deashed resid from period A and V-1074 heavy distillate from period B. The deashed resid has an elemental composition that is very nearly the same as the solids-free fraction of the recycle solvent, as shown in Table 1. The only significant difference is a slightly higher hydrogen content in the ROSE deashed resid which is about 0.4% higher than in the virgin CI solubles of the recycle solvent. This slight enrichment of H-containing materials in the deashed resid could be responsible for some change in relative resid activity in the two materials. The differences in the carbon and nitrogen compositions are relatively small.

Table 1. Elemental C	omposition of Deashed Resid from Wilsonville Run 258	•
	Cresol Insolubles-free Recycle Solvent	V-130 Deashed Resid
Elemental Composition	n, solids-free basis, wt%	
Carbon	90.1	90.80
Hydrogen	6.47	6.86
Nitrogen	1.20	1.13
Sulfur	not reported	0.06
Oxygen	not reported	1.05
Ash	not reported	0.10
Source of elemental data	Table 4, DOE/PC/50041-130	Table 15, DOE/PC/50041-130

Since the amounts of distillate, deashed resid and dry coal in the CST are nearly the same as in Run 263J, the overall composition should approximate the feed stream used in the Wilsonville pilot plant except for the absence of the solids component. In this mixture the actual concentration of the dry BT Wyodak coal is 35 wt %, versus the 30 wt % used in the Wilsonville feed stream. Removing the solids from the reaction mixture should simplify the interpretation of the results since considerable

catalyst is contained in this fraction.

Activity of ALC-1 Catalyst in CST (B. Demirel)

The performance of the catalysts used in ALC-1 Condition #1, i.e. Molyvan A and HTI's proprietary FeOOH/SO₄ catalyst, was determined in the CST in order to have a comparison in our micro reactors between other catalysts we are developing and the HTI continuous bench-scale. In ALC-1 these catalysts were used at a make-up rate of 100 mg Mo/kg and 1.0 g Fe/100 g dry coal, respectively. Molyvan A is a molybdenum oxysulfide dithiocarbamate that is insoluble in petroleum oils and contains 29 w% Mo. The HTI FeOOH/SO₄ is a solid containing 10 w% Fe. Because it is proprietary to HTI, it was not otherwise analyzed or characterized.

This series of tests were run in a solvent comprising ROSE SR V-130 deashed resid from Wilsonville Run 258A and V-1074 heavy distillate from Run 258B, as described in the previous Quarterly Technical Progress Report DOE/PC/91040-64. The feed composition was:

HTI Black Thunder Coal, mf	35%
Heavy Distillate, R258B	25%
Deashed Resid, R258A	40%

The reaction conditions were:

Temperature		450°C
H ₂ Pressure		850 psig
H ₂ S (7.93%)/H ₂ Pressi	ure	500 psig
Total Pressure	1350 psig	·
Time		30minutes

The results from this series of runs are shown in Table 2. Experiments run in the absence of any added catalyst either with or without H₂S gave essentially the same result, indicating that H₂S does not effect resid or THF conversion in the absence of catalyst. With Molyvan A, H₂S had a very definite effect giving higher coal and resid conversion upon adding H₂S. In this series, the lower H₂S concentration gave a higher resid conversion although the THF conversions were essentially the same. It should be noted that the composition of molybdenum changes for each catalyst due to difficulties in weighing.

The HTI FeOOH/SO₄ catalyst when used alone gave lower activity than Molyvan A, both in the presence and absence of H₂S. However, conversions were much better in the presence of H₂S. Combining the Mo-Fe catalysts gave better performance, all in the presence of H₂S, especially at higher iron concentrations. The Fe concentrations were evaluated over a range of 0.2 to 0.8 w% on dry coal.

Because experiments in the microautoclaves are run in a closed system without any exchange of gas, the amount of water present with the HTI FeOOH/SO₄ catalyst was sufficient, when run under CST

	Table 2. Activity of ALC-1 catalyst and PMA in CST						
Run	Catalyst	Concentration, w% dry coal		Added Sulfur			ı, w%
	J. Camings.	Mo, ppm	Fe, g/100g	H ₂ S or S	Coal	Coal +IOM +Resid	Coal+IOM+ Resid (daf)
B6-142-1	None	-	•	None	65.7	13.2	28 .5
B6-149-1	None	-	-	H ₂ S	66.3	13.3	28.1
B6-199-1		29 5	-	None	76.7	16.6	35.1
B6-192-1	Molyvan A	300	-	1/2H ₂ S	90.5	24.3	51.5
B6-128-1		330	-	H ₂ S	88.2	2 0.2	42.9
B6-136-1		-	0.880	None	64.7	14.4	30.4
B6-142-2	HTI Fe'	-	0.715	H ₂ S	78.1	19.2	40.6
B6-205-1		250	0.200	H ₂ S	91.6	28.5	60.4
B6-200-1	Molyvan A+HTI Fe ¹	250	0.470	H ₂ S	91.7	28.4	60.1
B6-137-1		365	0.775	H₂S	92.2	30.3	65.5
B6-179-1		-	0.695	none	74.7	19.2	4 0.6
B6-177-1	Fe #1 ²	-	0.705	H₂S	80.4	23.0	49.0
B6-185-1		-	0.7 30	S	75.5	14.2	30.1
B6-179-2		-	0.7 05	none	73.6	14.3	30.2
B6-170-1	Fe #2 ³	-	0.710	H₂S	82.0	23.3	49.3
B6-191-1		-	0.695	S	74.6	16.3	34.4
B6-149-3	PMA ⁴	325	-	H₂S	80.7	20.1	42.7
B6-163-1	PMA (I on C w/ excess W) ⁵	30 0	•	H₂S	90.0	30.5	64.6
B6-207-1	PMA (I on C w/ IWW)6	300	•	H ₂ S	91.6	23.9	50.6
B6-166-1	PMA (I on 10% C w/ excess W) ⁷	340	•	H₂S	90.8	33.3	70.4
B6-197-1	PMA (I on 10% C w/ IWW) ²	30 0	•	H ₂ S	88.2	24.0	50.8
B6-197-2	PMA (I on 10% C w/ IWW)*+Fe1	300	0.700	H ₂ S	90.8	24.7	52.4

⁽¹⁾ HTI FeOOH/SO₄ catalyst

⁽²⁾ HTI Fe catalyst calcined 490 °C/3 h; humidified in a desiccator over water

⁽³⁾ HTI Fe catalyst dried 96 °C/0.3 atm; humidified in a desiccator over water

⁽⁴⁾ Phosphomolybdic acid added directly.

⁽⁵⁾ Phosphomolybdic acid impregnated on coal with excess water; dried at 96°C and 0.3 atm overnight.

⁽⁶⁾ Phosphomolybdic acid impregnated on coal with 0.45 g water/g dry coal and dried to 3.93% moisture prior.

⁽⁷⁾ Phosphomolybdic acid impregnated on 10% coal with excess water and dried at 96°C and 0.3 atm overnight.

⁽⁸⁾ Phosphomolybdic acid impregnated on 10% coal with 0.45 g water/g dry coal (not dried prior to use).

condition, to exceed the upper pressure limit on the reactors. These microreactors are equipped with rupture discs rated at ~2700 psi at 21 °C. Since the CST operates typically at pressures of about 2500 psi, any significant excess water over and above the amount in the normal charge stock can result in rupture of the relief valve. In order to guard against this, careful control of the water content in the feed is necessary to prevent exceeding the maximum allowable pressure with the existing relief system. Fe #1 catalyst was prepared by calcining of HTI Fe catalyst at 490°C for 3 h and humidifying in a desiccator over water. Fe #2 catalyst was prepared by first drying at 95°C and 250 torr overnight and then humidified over water in a desiccator. In the presence of H₂S, both catalysts were more active than the FeOOH/SO₄ with the water still present. In the continuous run, unlike the microautoclave, much of the water is removed in the slurry feed tank which results in a relatively dry reaction environment in the reactor.

Because of the interest in possibly using elemental S as a sulfiding agent, a few runs were made with these two dried Fe catalysts. The activities of both Fe #1 and Fe #2 were lower in the presence of elemental sulfur than when H_2S was present. Upon the addition of elemental sulfur, resid conversion decreased to 30-34% (daf) whereas it was about 49% with H_2S .

Task 2.1.2 Activation of impregnated metal catalysts (R. K. Anderson)

Studies continued on the pretreatment of incipient wetness (IW) impregnated coals. In the previous quarterly report, we presented data on the Ni/Mo and Fe/Mo impregnated coals, using 30 minute pretreatments at temperatures from 275 °C to 440 °C, immediately followed by 30 minutes reaction time at 440 °C in coal derived liquids from Wilsonville run 258A. Here, data are shown for Mo-only impregnated coals (See Table 3), using ammonium molybdate as the starting salt and as-received Black Thunder coal. Again, the entire coal was impregnated (vs the vector approach). These experiments required three coal preparations to complete, and covered batches CB-51, -58 and -59. Each carried about 500 ppmw Mo (mf coal basis), and all contained about 6-8% more moisture than the starting coal.

Figure 1 summarizes both resid and THF coal conversion for each of the impregnated coals tested. As was seen in Phase I, the Mo-only impregnated coals gave better resid conversion than the Fe/Mo impregnated coal. Overall however, Ni/Mo gives the best results with enhanced coal dissolution.

Task 2.1.3 Optimizing Metal Concentration in the Catalyst

In an effort to determine what an upper conversion limit would be for the conditions used here, and unlimited by catalyst availability, an experiment was run using crushed AKZO AO-60 at 10 wt% Mo+Ni (mf coal basis), while holding other feedstocks the same as in the pretreatment studies. Reaction conditions were 440 °C for 30 minutes, without any pretreatment period. A check of the product gas composition shows almost 2% H₂S, so that there was sufficient available to sulfide the catalyst. As shown in Table 4, 524 °C+ (975 °F+) resid conversion was found to be 39.7%, and coal conversion (THF) was 95.8%. When viewed in the context of the other experimental work [no

catalyst, 17-19% resid conversion; and with 500 ppmw Mo, ~30 % resid conversion], this result suggests that the economic employment of catalyst in this system would probably be in the range up to 1000 ppmw. Figure 2 presents this information graphically, summarizing selected runs using Mo and Ni/Mo catalysts without pretreatment, and shows the catalyst concentration on the axis using a logarithmic scale.

	· · · · · · · · · · · · · · · · · · ·					
Ta	ble 3. Resu	ts of 30 min	ute liquefact	ion experime	nts.*	·
Catalyst preparation	CB-58	CB-58	CB-59	CB-58	CB-58	CB-51
Mo added, ppmw	504	504	482	504	504	552
Pretreat time, min @°C	none	30 @ 275	30 @ 300	30 @ 340	30 @ 375	30 @ 440
Products, wt% maf Co	oal					
HC Gases	14.0	14.6	13.6	14.1	13.2	19.7
CO+CO ₂	11.6	12.2	11.5	11.1	11.0	11.0
524 °C- (975 °F-)	38.3	39.5	39.5	37.9	41.7	64.8
524 °C+ (975 °F+)	36.1	33.7	35.4	36.9	34.1	4.5
Total	100.0	100.0	100.0	100.0	100.0	100.0
THF Conv	90.4	91.7	93.3	91.4	90.3	90.6
Resid Conv, wt% maf resid	27.1	28.1	27.4	26.8	28.0	40.8
Material Bal index	102	104	100	104	9 6	97
H ₂ consumed, mg/g maf Coal	50	5 6	51	57	61	70
Coal moisture, wt %	31	31	31	31	31	30
Run No.	R6-128-1	R6-136-2	R6-141-1	R6-130-1	R6-130-2	R5-346-1

a. Liquefaction experiments at 440 °C for 30 minutes, using 3 g Black Thunder coal, 2.90 g V-130 deashed resid and 1.43 g V-1074 heavy distillate from Wilsonville Run 258A. 1350 psig cold charge pressure, including 3% H2S. SO₃-free ash basis.

Table 4 shows other work designed to test the effect of added Ni, above the level selected for the earlier studies. For those experiments an impregnated coal, CB-60, was prepared which carried nominally 500 ppm Mo and 500 ppm Ni. Duplicate experiments (R6-144-2 and R6-151-1) were run without pretreatment, and a single run with 30 min pretreat at 300 °C was also checked (R6-169-2). These are shown in Table 4 in comparison to the other coal liquefaction experiments where 500 ppm

Figure 1.

Ni/Mo, Mo and Fe/Mo IW Impregnated Coal

Effect of Pretreatment Temperature

3% H2S, 1350 psig total pressure, cold

Ni/Mo coal: 500 ppm IW Mo plus 100 ppm IW Ni

Fe/Mo coal: .67% IW Fe plus 500 ppm IW Mo

Mo coal: 500 ppm IW Mo

30 min hydrotreatment at 440 C, 60 min total run

- % THF Conv. Ni/Mo coal
- % Rc, Ni/Mo coal
- ▲ % THF Conv, Fe/Mo coal
- ▼ % Rc, Fe/Mo coal
- ◆ % THF Conv, Mo coal
- % Rc, Mo coal

Figure 2.

Catalyst Concentration Effects

	Table 4. R	esults of 30 i	minute liquef	action experis	ments.*	
Catalyst preparation	None	CB-52	CB-60	CB-60	CB-52	CB-60
Mo/Ni added, ppmw (mf coal)	85,600/ 18,200	538/101	528/528	528/528	538/101	528 /528
Pretreat time at °C, mins	none	none	none	none	30 @ 300	30 @ 300
Products, wt% maf Coal						
HC Gases	14.2	12.0	12.4	13.5	14.3	14.6
CO+CO ₂	8.8	11.4	10.9	11.6	11.8	11
524 °C-	65.5	35.4	39.1	42.4	44.9	36.2
524 °C+	11.5	41.2	37.6	32.5	29	38.2
Total	100.0	100.0	100.0	100.0	100.0	100.0
THF Conv	95.8	90	93.8	9 2.9	95.3	89.5
Resid Conv, wt% maf resid	39.7	26.9	27.7	30	32.4	27.5
Material Bal index	95	98	99	9 9	100	106
H ₂ consumed, mg/g maf Coal	73	54	54	55	61	62
Coal moisture, wt %	24	21	25	25	21	25
Run No.	R6-144-1	R6-26-1	R6-144-2	R6-151-1	R6-66-1	R6-169-2

a. Liquefaction experiments at 440 °C for 30 minutes, using 3 g Black Thunder coal, 2.90 g V-130 deashed resid and 1.43 g V-1074 heavy distillate from Wilsonville Run 258A. 1350 psig cold charge pressure, including 3% H2S. SO₃-free ash basis.

Mo and only 100 ppm Ni were used. As can be seen from that data, without pretreatment there is a nominal increase in both 524 °C+ (975 °F+) resid conversion and THF conversion. However, this increase is only to levels seen earlier with the pretreatment experiments using coals impregnated at the lower 100 ppm Ni level, and one wonders if the increase in resid conversion found here is only due to improved Ni dispersion.

With the 30 min pretreatment, a slight decrease in conversion is seen, but hydrogen consumption was found to be the same. In total, the data collected to date suggests that most of the improvements in conversion from added Ni can be accrued at low concentrations.

The effect of lower H₂S partial pressure was also tested using a Ni/Mo impregnated coal (CB-61) in 30 min liquefaction at 440 °C. The outcome was similar to run R6-26-1 shown in Table 4, but showing slightly lower resid conversion. Since conclusive evidence would be needed to support a run condition change for ALC-2, this work will be duplicated in the next period.

Resid Concentration in Ashy Resid - A sample of the ashy resid from Wilsonville Run 262E was analyzed by SIMDIS and was found to be ca 16% 565 °C- (1050 °F-). Since this was somewhat higher than the 2.5% value used to determine resid conversion in earlier studies, a second sample was submitted, combining heavy distillate and ashy resid to see if there were some interactive effects when this mixture was distilled together. This was found to be 51% 565 °C- (1050 °F-) (inferring an ashy resid distillate content of about 13%), vs the value used earlier of 45%, as reported by Southern Electric. If the newer numbers are more accurate, it would lower resid conversion about 4% or 5%.

It was also observed, working with SIMDIS generated data, that resid conversion is pretty sensitive to the cut point temperature selected. For example, increasing the cut point from 524 °C (975 °F) to 565 °C (1050 °F) increases resid conversion in a typical experiment by about 8%, even though the amount of resid in the feedstock is reduced.

<u>Laboratory analysis</u> - To verify the expected low background concentration, a sample of the DAR was submitted to an outside lab for Mo determination, and was found to contain <10 ppmw Mo.

Phosphomolybdic acid as catalyst precursor (B. Demirel)

The activity of phosphomolybdic acid (H₃PMo₁₂O₄₀·xH₂O) was determined in several different runs. When added as a crystalline material to the reaction mixture, its activity was quite low. However, if impregnated onto coal, its activity improved significantly. Impregnated coals were prepared by two different methods. In one case, all of the coal was impregnated with the PMA using the incipient wetness volume of water. In the other cases, the PMA was impregnated onto 10% of coal and then blended with the remaining coal, the vector approach. The vector impregnated coal using excess water gave higher resid conversion in two different cases than the other coals in which an incipient wetness volume of water was used. The excess water may have resulted in better dispersion during impregnation.

Ammonium Tetrathiomolybdate as Catalyst Precursor (H. Von Woert)

Liquefaction catalysis using ammonium tetrathiomolybdate (ATTM) as a precursor was studied during this reporting period. A fresh sample of ATTM was prepared starting with ammonium paramolybdate. A corresponding sample obtained from Aldrich Chemical was considerably different suggesting that the commercially available material had decomposed upon standing. Subsequently, a sample of fresh ATTM was also observed to become less soluble after standing about 2 months. Therefore, it will be necessary to prepare fresh material if this material will be tested in a continuous run.

Impregnated coal samples were prepared by adding a 1% aqueous solution of ATTM to obtain a Mo concentration of 300 mg/g dry coal. Both as-received as well as dry coal samples were prepared. At this level of moisture addition, as-received impregnated coal contained 15.1% moisture. A coal sample that had been previously dried overnight at 100 °C under vacuum contained 9.9% moisture after impregnating to a Mo level of 300. Of course, when impregnating with only 100 ppm Mo, as will be done when testing in the continuous bench-scale unit, the impregnated as-received coal samples will contain approximately 11% moisture.

Each catalyst impregnated coal was evaluated in the CST starting with deashed resid and distillate from Wilsonville Run 258. The results of these runs are shown in Table 5.

Liquefaction of both as-received and dry coal impregnated with ATTM in the presence of H₂S gave nearly the same 524 °C+ (975 °F+) resid conversions of 24.9 and 28.4%. On a maf coal basis, the resid conversions were 50.9 and 60.5%, respectively. The corresponding coal conversions were 84 and 88% in the presence of H₂S. The yield of gases were slightly higher for the dry coal run. Therefore, there is little difference between using as-received and dry coal as feed.

Table 5. Wyodak Co Conditio	-), $2\% H_2S$ in H_2	•	
Coal	As-received	Dry coal	As-received	Dry coal	As-received
Moisture in coal, wt%	8.9	7.5	16.4	7.5	15.1
Mo conc, mg/kg dry coal	none	350	370	350	370
H ₂ S, wt% dry coal	7.3	4.3	4.3	0	0
HC gases, wt% maf coal	ND	10.0	9.6	9.6	9.7
Co _x gases, wt% maf coal	ND	8.5	7.9	9.3	8.7
524 °C+ Resid Conv, wt% maf IOM+resid	not determined	24.9	28.4	24.0	17.6
524 °C+ Resid Conv, wt% maf coal	not determined	50.9	60.5	56.1	37.5
THF IOM, wt% maf coal	48.4	15.6	11.6	34.1	34.2
THF Conversion	51.6	84.4	88.4	65.9	65.8
Run No.	V6-101-1	V-111-1	VSMSR-1 V6-206-1 V6-206-2	V6-185-2	V6-185-1 V6-213-1

Because sulfur was already present in the precursor, the runs were made in the absence of H₂S to determine whether H₂S had an effect on product distribution. Gas yields and 524 °C+ resid conversions were essentially the same. Surprisingly, the yield of IOM products were considerably higher in the absence of H₂S. This could be the result of decreased conversion of the original coal macerals or it could indicate coking of the heavier products back to insoluble matter, i.e. a retrogressive type reaction. At any rate, the H₂S had a very definite effect on THF soluble yield. To check this result a new batch of impregnated coal was prepared and is now being run.

TASK 2.1.5 Coal Cleaning by Column Flotation

Beneficiation Studies of Black Thunder Coal (B. K. Parekh)

Introduction: An exploratory experimental study was performed at the University of Kentucky Center for Applied Energy Research to determine the possibility of producing a low ash Black Thunder coal using froth flotation technique. Flotation tests were performed on a fine ground (80% passing 325 mesh) coal using the Denver and 'Ken-Flote' column techniques.

It was observed that despite Black Thunder coal being classified a sub-bituminous coal, it responded favorably to froth flotation technique. High recovery of combustibles were obtained at a low or moderate ash rejection, suggesting that a majority of ash may be present as 'inherent' ash. Both conventional and column flotation provided a 3.4% ash clean coal at 75% combustible recovery at a ash rejection of about 65%.

<u>Objectives</u>: The main objective of the study was to develop optimum column flotation operating conditions for cleaning of Black Thunder coal to obtain a 2% ash clean coal at 90% combustible recovery.

Results: A one 55-gallon drum of the Black Thunder coal of approximately 2-in. top size was received at CAER. After crushing the coal to minus 1/4 in. a representative sample of the crushed coal was analyzed for proximate analysis. Table 6 lists the analysis of the `as received' coal. Note, that the coal had about 27% moisture and 7.01% ash (on dry basis).

Table 6. Proximate Analysis of As-Received Black Thunder Coal.						
Weight % Weight %, dry basis						
Moisture	26.92	-				
Ash	5.12	7.01				
Sulfur	0.37	0.51				
Pyritic	0.05	0.07				
Sulfate	0.06	0.06				
Organic	0.26	0.36				
Volatile Matter	32.54	44.53				
Fixed Carbon	35.4	48.4				
Heating Value	8 900 Btu/lb	12192 Btu/lb (db)				

Grinding studies of the crushed coal were conducted in the Attritor Mill, which is efficient in fine grinding of coal. For grinding studies a 50% suspension of the coal in water was utilized. Table 7 lists the particle size of the coal obtained at various grind times. Note, that the median particle size of the ground coal remains unchanged after 15 minutes of grinding. The average particle size of 10 minutes grind was about 11 μ m. Figure 3 shows the particle size distribution of the 10 minutes ground coal. All the flotation tests reported were conducted with the 10 minutes ground coal.

Froth Flotation: Initial froth flotation tests were conducted using the laboratory Denver

flotation machine. Table 8 lists the flotation data for the coal. Note, that the lowest ash content of 3.9% and combustible recovery of 52.5% was obtained using 2 lb/t of fuel oil and MIBC. The data also showed that 0.5 lb/t of reagent dosage was not sufficient to clean the coal.

A release analysis of the fine ground coal was conducted using 2 lb/t of reagents. Release analysis is similar to float sink analysis of coarse coal. The release analysis provides a guideline on practical limit of recovery and ash content of clean coal that could be obtained using the conventional froth flotation technique. Figure 4 shows the release analysis data of

the fine ground Black Thunder coal. According to the figure, 3.7% ash clean coal could be obtained at 80% combustible recovery. A 3% ash clean coal could be obtained at only 30% combustible recovery.

Table 9 lists flotation tests conducted using various types of operating conditions and reagents. Note, that acid scrubbing at 30% solids concentration (Test 1) and floating using 5% solids suspension gave higher combustible recovery compared to scrubbing conducted using lower 5% solids. Addition of sodium metaphosphate, a dispersant, did not provide any improvement in clean coal ash content or combustible recovery.

Column Flotation Studies: Column flotation studies were conducted using a 2-in. I.D., 20-ft. high column. Figure 5 shows the effect of air flow rate on combustible recovery and ash content of clean coal. As expected, both the ash content and combustible recovery increasing with increase in air flow rate. The lower ash content at 3.5 L/min. air flow could be due to some experimental error.

Effect of wash water on column flotation performance is shown in Figure 6. Note, that the ash content of clean coal remained mostly constant at ~4.5% as wash water rate is increased, however, combustible recovery decreased from 70% to 30%.

Effect of feed rate on the column flotation performance is shown in Figure 7. It shows that the ash content increased from 3.2 to 3.7% and combustible recovery decreased from 75 to 45% with increase in feed rate from 0.5 to 1 liter/minute.

Conclusions: Based on the above-cited data, it can be concluded that

- conventional flotation of the Black Thunder coal ground to an average particle size of 11 μ m, provided a 3.5% ash clean coal at about 70% combustible recovery using acid scrubbing step. In other words, conventional flotation provided about 65% ash rejection from the feed coal.
- column flotation of the Black Thunder coal, using a feed rate of 0.5 liter/minute, wash water rate of 0.2 liter/minute, provided the best result, i.e., 3.4% ash clean coal at about 75% combustible recovery. The results obtained using conventional and column flotation technique were very similar which could be due to very low ash content of the feed. Column is effective in rejecting ash, however, when the ash content is low, the column flotation will not show any improvement over the conventional flotation.

Table 7. Particle Size of the Fine Coal Obtained at Various Grind Time						
	Grind Time (minutes)					
	5 10 15 20 30					
Medium Size (μm)	13.60	11.55	6.47	5.67	4.56	
Diameter of 10% passing (µm)	0% passing (μm) 1.77 1.29 1.06 1.02 0.93					
Diameter of 90% passing (μ m)	41.52	40.09	18.21	17.09	15.25	

Table 8. Effect of Reagent Dosages on Ash Content of Clean Coal and Combustible Recovery for the Black Thunder Coal					
Reagent 1	Reagent Dosage (lb/t) % Ash				
Fuel Oil	MIBC		Recovery		
0.5	0.5	5.0	81.9		
1.0	1.0	4.1	26.9		
2.0	2.0	3.9	52.5		
4.0	4.0	3.9	52.5		

Table 9. Flotation Test Data Obtained Using Various Reagents and Process Conditions					
Test No	Process Conditions	% Ash	% Combustible Recovery		
1	Acid scrubbing at pH 2.0, at 30% solids, flotation at 5% solids	3.4	72.63		
2	Acid scrubbing at pH 2.0 using 5% solids	3.4	58.41		
3	7 lb/t of sodium metaphosphate	4.2	53.7		

Figure 3. Particle size distribution of 10 minutes ground coal

Figure 4. Release analysis of the 10 minutes ground coal.

Figure 5. Effect of air flow rate on combustible recovery and product ash content of Black Thunder coal.

Figure 6. Effect of wash water rate on product ash and combustible recovery of Black Thunder coal.

Figure 7. Effect of feed flow rate on column flotation performance for the Black Thunder coal (air flow rate 3.5 1/min.),

SECTION TWO

CONSOL, INC.

January 16, 1997

Report Period: April 1 - June 30, 1996

SUBCONTRACT TITLE AND NUMBER:

Subcontract UKRF-4-25582-92-76 to CONSOL Inc.
Under DOE Contract No. DE-AC22-91PC91040, "Advanced Coal Liquefaction Concepts for the PETC Generic Bench-Scale Unit"

SUBCONTRACTOR NAME:

CONSOL Inc.
Research & Development
4000 Brownsville Road
Library, PA 15129

SUBCONTRACT PERIOD: November 26, 1991 - September 30, 1996

PRINCIPAL INVESTIGATORS: F. P. Burke, R. A. Winschel, G. A. Robbins

SUBCONTRACT OBJECTIVES: No change.

SUMMARY OF TECHNICAL PROGRESS - OVERALL

All CONSOL's support activities for Run ALC-1 were completed on schedule. This included characterization of materials produced in Sandia's and HTI's hydrotreating and dewaxing work conducted in advance of Run ALC-1; on-site monitoring of Run ALC-1; characterization of the coal-agglomerates produced by CONSOL for Run ALC-1 and analysis of the rejected solids and waters to generate elemental and material balances of the agglomeration process; review of HTI's preliminary results from Run ALC-1; and organization of the post-run meeting to discuss Runs ALC-1 and ALC-2.

Activities planned for next quarter include: generate elemental and material balances for the agglomerate production runs; analyze the Run ALC-1 separator overhead water samples to determine if there is unreported carbon, nitrogen and sulfur that may improve the elemental balances; characterize the wax produced in Run ALC-1; evaluate the solvent quality of the Run ALC-1 dewaxed and hydrotreated recycle oils; participate in planning Run ALC-2. The process oil samples collected during Run ALC-1 are being characterized by CONSOL under DOE Contract DE-AC22-94PC93054.

SUMMARY OF TECHNICAL PROGRESS - BY TASK

Task 2 - Laboratory Support

Laboratory Coal/Oil Agglomeration Testing Completed in Preparation for Run ALC-1. The laboratory agglomeration tests were completed to prepare for the large-scale production agglomeration runs. The base-line agglomerates from laboratory-scale test A75 were analyzed (Table 1). The ash elemental analysis shows that calcium, magnesium, sodium, and the resulting ash SO₃ are selectively rejected from the ash of the agglomerates (compare with ash elemental analysis of the feed coal, Table 9).

The elemental analysis of the dried (but not ashed) filter cake from laboratory-scale agglomeration test A78 indicates that the filter cakes of these low-pH agglomerations tests with Black Thunder coal consist principally of gypsum. The analysis (Table 2) is consistent with material that is 83 wt% gypsum (CaSO₄•2H₂O), 17 wt% silica, and less than 1 wt% of anything else. It was also determined that the ashed filter cake from Run A79 contained 19.3% sulfur; this is consistent with material that is 82% CaSO₄.

Characterization of Sandia Hydrotreating Samples Produced in Preparation of Run ALC-1. Samples of the feedstock and eight products from Sandia's hydrotreating tests with Criterion C-411 catalyst were characterized. Sandia conducted these tests to help plan solvent hydrotreating conditions for Run ALC-1. Table 3 lists Sandia's operating conditions and simulated distillation data of the products. Sandia provided CONSOL with partially-full 20 mL vials of the various samples for characterization. CONSOL's elemental analyses are shown in Table 4. CONSOL's ¹H-NMR proton distributions and microautoclave solvent quality assay data are shown in Table 5. Key observations are:

- The feedstock has an unexpectedly high S content for a coal-derived HTI VSOH.
- Five of the eight products had a strong ammonia odor. Some of the product nitrogen is probably dissolved ammonia.
- The products appear to belong to two groups on the basis of elemental analysis and proton distributions: the earliest five and the latter three. The latter three are generally less hydrogenated. For example, even though samples 100-35-96C and 100-313-96B were

produced at ostensibly similar conditions, the latter has more N and S and less H and is more aromatic. This may reflect catalyst age.

- The first five products were made at the high hydrogen treat rate. The primary effects of increasing the temperature were to decrease S and N contents and decrease the boiling point distribution of the product. There was not a substantial effect on H content or proton distribution of the product. At higher temperatures, there was greater heteroatom removal and cracking, and about the same level of liquid product hydrogenation. The similar H contents but lower boiling point distributions of the products made at high temperatures may indicate that there is lower H content in each given narrow boiling point fraction of the high-temperature products.
- For the last three products (made at 365 °C, 689 °F), decreasing the hydrogen treat rate increased the S and N contents and the aromaticity and boiling point distribution of the products. There was less hydrogenation, and apparently less cracking, at the lower treat rates. In the absence of gas/liquid recovery data, the cause of the high-boiling tail in the two products with the lowest treat rates is unclear. It could be caused by loss of light products, polymerization, sample contamination, or analytical error
- Solvent quality assays at a single set of conditions on the feedstock and one product in each
 of the two groups show that the products are better hydrogen donor solvents than the
 feedstock.

We recommended to HTI that Run ALC-1 VSOH hydrotreater operating conditions be selected to promote hydrogenation, but not cracking. Neither cracking nor heteroatom removal are important functions for this step. We recommended that HTI operate their solvent hydrotreater at 365 °C (689 °F) or lower and at high H₂ treat rate. We discussed our Run ALC-1 hydrotreating recommendations with LDP and HTI. On the basis of prior experience, HTI expected their originally planned conditions ((379 °C)715 °F, about 2.4 WHSV, 15.2 MPa (2200 psig) H₂, and treat rate about 1.07 std m³/L (6000 SCF/bbl)) to produce only about 10% 343 °C⁻ (650 °F⁻) material from the VSOH. However, they agreed to lower the temperature to 371 °C (700 °F), to further reduce the possibility of over-hydrogenation or cracking. Sandia produced a high yield of light material at an even lower temperature, but their space velocity was only about one-half of HTI's.

Characterization of HTI Dewaxing Sample in Preparation of Run ALC-1. HTI provided a sample of the dewaxed VSOH inventory (the solvent hydrotreater feed) from HTI. ¹H-NMR analysis shows that it contains about 8% acetone (the dewaxing solvent). This was reported to HTI, who performed distillation testing to verify this result and plan corrective measures. The original material was only flashed (not distilled), and the acetone removal efficiency was lower than HTI anticipated. HTI found 5% to 7.5% acetone in their distillation of the original material. HTI found suitable distillation procedures that leave only traces of acetone in the stripped product. We stripped the acetone from our sample by rotary evaporation and analyzed the stripped material by elemental analysis, ¹H-NMR, and GC/MS (Table 6). It was our understanding that the oil was to be predominantly a 343 °C* (650 °F*) distillate. However, the GC/MS analysis shows that the dewaxed oil has a substantial quantity of 343 °C* (650 °F*) material in it (for example, cresol and methylnaphthalene are major components). Clearly, the starting oil selected by HTI for dewaxing and hydrotreating had a lower boiling point distribution than originally desired.

HTI sent dewaxed oil samples (343 °C⁻ (650 °F⁻) and 343 °C⁺ (650 °F⁺) fractions) that were stripped of acetone, hydrotreated, and fractionated at 343 °C (650 °F). CONSOL analyzed the fractions by ¹H-NMR (Table 6) and GC/MS. The aromaticity in both fractions of the hydrotreated oil was reduced relative to the dewaxed oil, which confirms substantial hydrogenation. The GC/MS chromatograms show that the fractions of the hydrotreated oil contain more hydroaromatics and naphthenes than the dewaxed oil.

Characterization of Run ALC-1 Process Samples. HTI provided the requested process oil samples collected during Run ALC-1. These samples are being characterized by CONSOL under DOE Contract DE-AC22-94PC93054.

Task 3 - Continuous Operations

The various process streams produced during the production of the coal-oil agglomerates for Run ALC-1 were analyzed. HTI required the coal-oil agglomerate analyses for input to their material balance and yield calculations for Run ALC-1. The analyses of the rejected solids and water streams will be used to calculate material and elemental balances for the agglomeration runs.

Properties of Coal-Oil Agglomerates Used in Run ALC-1. The complete analyses of the feed coal and feed oil used to produce the agglomerates are provided in Tables 7 and 8, respectively.

The agglomerating oil analysis (Table 8) used to obtain these results is an average of two CONSOL analyses. HTI's re-analysis of this oil generally confirmed these analyses (Table 8). The analyses of the agglomerates produced for Run ALC-1 are presented in Table 9.

The elemental compositions of the oil-free agglomerated coal were calculated for each production agglomeration run (Table 10). These were obtained by backing out the C, H, N, S, and O (by difference) contents of the agglomerating oil (Table 8) from that of the product agglomerates (Table 9) from each batch (C2, C3, etc.) by: 1) adjusting the compositions of the agglomerates to an MAF basis, 2) accounting for the contribution of agglomerating oil as one of two MAF organic components (the other being MAF coal), then 3) adjusting the calculated composition of the coal portion back to an MF basis. Thus, the elemental composition of the MF coal component of each batch of agglomerates was derived by calculation from the analytically-determined elemental compositions of the agglomerating oil and the agglomerates from each batch. The weighting factors for the elemental compositions of each of these components were obtained by normalizing the percent agglomerating oil and percent MAF coal in the agglomerates to represent percent MAF organics. Table 9 includes two entries for cake moisture content and for ash SO₃. These calculations were based on the Leco ash-SO₃ values and the oven moisture values presented in Table 9.

Some aspects of the agglomerated coal elemental compositions deserve comment. Relative to the composition of the agglomeration feed coal (Table 7), the coal portion of the agglomerates is calculated to be similar in carbon and nitrogen content, higher in hydrogen, sulfur, and oxygen content, and lower in ash content. The sulfur content of the coal was increased by about 0.5 wt % by the acid treatment. If the sulfur is present as sulfate ion, it accounts for about 1 wt % of the oxygen. Thus, the concentration of every element except hydrogen appears to be reasonable. The hydrogen content of the agglomerated coal appears to be about 0.5 wt % high. We have no explanation for this apparent increase; the amount of hydrogen that would be present from ion-exchange should be small. If moisture is under-accounted, it would result in high hydrogen contents. However, we have no reason to think that the moisture content is much higher than is reported here.

Microautoclave tests performed with agglomerated coal and with the agglomeration feed coal seem to indicate lower reactivity of the agglomerated coal. Tests were conducted at three sets of conditions, none employing catalyst. The conditions and conversion of coal to THF solubles

(on a SO₃-free MAF basis) follow. 1) At 440 °C (824 °F), 30 min, 10.3 MPa (1500 psi) H_2 , 1.5/1 solvent to MF coal ratio. The feed coal gave SO₃-free coal conversion of 82.9% \pm 1.7% (n=3). Tests of individual Runs C1 through C9 plus a duplicate of the Runs C2 through C9 composite sample gave SO₃-free coal conversions of 74.5% \pm 1.4% (n=11). The Run C10 agglomerates, produced with a different batch of feed coal, gave a coal conversion of 69.6% (N=1). 2) At 5 min, but otherwise the same conditions, the feed coal gave 67.2% conversion and the Run C6 agglomerates gave 68.2% conversion. 3) At 399 °C (750 °F), 30 min, 2/1 solvent to whole coal and no H_2 , the feed coal gave 72.9% conversion and the Run C2 agglomerates gave 69.1% conversion (at the same solvent to MAF coal ratio). Thus, the agglomerates were more difficult to convert to solubles in these tests. Nevertheless, the actual conversion of the agglomerates in Run ALC-1 was excellent.

The sample of composite agglomerates from Run C2 through Run C9 was separated by acetone solubility to see if this method accurately determines the MF coal/oil ratio of the agglomerates. The recovered dry solubles accounted for 26.26% of the feed, the recovered dry insolubles accounted for 69.38% of the feed, and there was 4.35% unrecovered material, including moisture. The estimated composition of this sample is 23.51% agglomerating oil, 68.91% MF coal, and 7.60% moisture (Table 10). The acetone solubility does a fair approximation of separating the two components. The two fractions were analyzed (Tables 11 and 12) to determine, among other things, the form of the sulfur added during low-pH agglomeration. A comparison of the analyses of the acetone solubles (Table 11) and the agglomerating oil (Table 8) shows that the acetone solubles have a similar proton distribution but a higher oxygen-by-difference content, caused, at least in part, by some remaining acetone (apparent in the NMR spectrum). A comparison of the analyses of the acetone insolubles (Table 12) and the feed coal (Table 7) shows the acetone insolubles to have a sulfur content approximately 0.5% higher, primarily because of sulfate retention.

To determine the approximate boiling point range of the agglomerating oil used in the large-scale agglomerate production runs, the oil was analyzed by gas chromatography/mass spectrometry. The earliest eluting major component is pyrene (b.pt. 393°C). The oil contains the n-paraffins from C_{20} through C_{37} (b.pts. 343 °C through 506 °C), but only C_{23} through C_{32} (b.pts. 380 °C through 467 °C) have substantial concentrations. Thus, its nominal boiling point range is 380-470 °C.

Properties of Solids and Waters Rejected During Run ALC-1 Agglomeration. The elemental analyses of the ashed, rinsed filter cakes are presented in Table 13. The rinsed filter cake is the rejected solids. The analyses indicate that the filter cake ashes are composed primarily of calcium sulfate and silica. These analyses plus information obtained in Task 2 (see above), indicate that the filter cakes (unashed) are composed primarily of gypsum (CaSO₄•2H₂O) and a siliceous component.

The analyses of the filtrates (the aqueous phase remaining after agglomeration, filtration, and rinsing) are presented in Table 14. The filtrates include the contribution from the agglomerate rinse water. The filtrates were analyzed for a group of elements (reported here as the oxide), acidity, and pH. The rinse water volume varied from run to run, and the dilution of the filtrates varied. However, the data indicate that the principal dissolved species include sulfates of calcium (major), magnesium (medium), and aluminum, iron, and sodium (minor).

The analyses of the feed coal (Table 7), agglomerate product (Table 9) and rejected solids and waters (Tables 13 and 14) indicate that elements selectively rejected from the coal by agglomeration at low pH are Ca, Mg, and Na.

Special measurements and samples were taken during Runs C7, C9, and C11 to provide additional characterization of the reject solids and waters. The special samples included the filter cakes and filtrates of the screen underflow stream (i.e., the material that passes through the screens used to recover the product agglomerates), prior to rinsing the agglomerates. These materials are collected prior to any rinse water dilution. The analyses of the filter cakes are given in Table 15 and those of the filtrates are given in Table 16. The analyses performed on the filter cakes include moisture, ash, and ash elemental analyses. A comparison of the compositions of the samples obtained after rinsing (Tables 13 and 14) with those of the samples obtained without rinsing (Tables 15 and 16) shows that rinsing depletes calcium from the filter cake and concentrates it in the filtrate.

The filter cake (primarily gypsum) produced during agglomeration Run C9 was examined with the optical and scanning electron microscopes. The gypsum was white and composed of 10 to $50 \mu m$ crystals. The analyses of the ashed filter cakes from three production agglomeration runs in Table 15 (filter cakes obtained prior to agglomerate rinsing) show them to consist of ca. 89% anhydrite, with the balance mostly silica.

Run ALC-1 Operations. Run ALC-1 started coal feed on April 19 and continued through 4:00 on May 14. CONSOL personnel were on site at HTI to monitor operations for the periods April 23 through May 2 and May 7 through May 12.

Task 4 - Technical Assessment

CONSOL sent a letter to HTI suggesting specific items which should be included in the draft Run ALC-1 report. CONSOL reviewed HTI's draft report on Run ALC-1 and provided comments. We met with Mike Peluso on June 5 in Library to discuss the Run ALC-1 results. CONSOL organized and participated in a post-run review meeting at HTI on June 18 to evaluate results from Run ALC-1 and to plan for future work. Several options were developed for future tiquefaction runs under this program. A meeting report was issued.

The paper "Testing of Advanced Liquefaction Concepts in HTI Run ALC-1: Coal Cleaning and Recycle Solvent Treatment" was submitted to the DOE First Joint Power and Fuel Systems Contractors Conference. A shorter version was submitted to the Thirteenth Annual International Pittsburgh Coal Conference.

R. A. Winschel Project Manager

/Is

TABLE 1

ANALYSIS OF RUN A75 AGGLOMERATES

Moisture, wt % As Determined Ash, wt % MF, Including SO ₃	2.72 2.91
Proximate, wt % MF, SO ₃ -Free Ash Basis Ash, SO ₃ -Free Volatile Matter Fixed Carbon	2.59 55.25 42.16
Ultimate, wt % MF, SO ₃ -Free Ash Basis Carbon Hydrogen Nitrogen Sulfur Chlorine Oxygen (by difference) Ash, SO ₃ -Free	75.57 6.24 0.94 0.68 <0.02 13.98 2.59
HHV, Btu/lb (MF)	13,473
Ash Elemental Analysis, wt % SiO ₂ Al ₂ O ₃ TiO ₂ Fe ₂ O ₃ CaO MgO Na ₂ O K ₂ O P ₂ O ₅ SO ₃ Undetermined	38.94 24.57 2.17 8.16 9.33 1.29 0.29 0.54 2.03 10.92 1.76

TABLE 2

ANALYSIS OF RUN A78 FILTER CAKE
DRIED, BUT NOT ASHED

Element Oxide	wt %
SiO ₂	16.53
AJ_2O_3	0.05
TiO ₂	0.06
Fe ₂ O ₃	0.18
CaO	27.04
MgO	0.06
Na ₂ O	0.04
K ₂ O	0.02
P ₂ O ₅	0.01
SO ₃	39.05
Undetermined	16.97(a)

(a) Believed to consist principally of gypsum hydration water.

TABLE 3

OPERATING CONDITIONS AND SIMULATED DISTILLATION DATA SANDIA HYDROTREATING SAMPLES FOR RUN ALC-1 (Data supplied by Sandia)

							Sim Dist Data	
	Temp.,	Total Pressure, psig	H ₂ Treat Rate, SCF/bbl	WHSV	IBP,	wt % off @ 600 °F	wt % off @ 650 °F	FBP, ●F
Feedstock HTI PFL VSOH 227-90-10		•	•	. •	~445	~9.2	20.4	950
Products								
100-35-96C	365	1800	9000	1	269	21.7	38.0	947
100-37-96A	375	1800	9000	1	218	23.3	39.5	941
100-38-96B	385	1800	9000	1	215	24.8	40.8	936
100-311-96B	395	1800	9000	1	215	26.6	42.4	93 5
100-312-96B	405	1800	9000	1	209	31.3	47.0	937
100-313-96B	365	1800	9000	1	<400	20.7	3 5.8	944
100-315-96A	3 65	1800	4500	1	<400	13.9	24.4	69.7% off @ 1000 °F
100-316-96A	36 5	1800	3000	1 .	<400	12.6	22.4	68.8% off @ 1000 °F

Catalyst - Criterion C-411 Trilobe (Ni/Mo/Al)

Source:

Fax of J. Miller to M. Peluso 4/3/96, personal communication with J. Miller 4/10/96, and fax of J. Miller to R. Winschel 4/10/96.

TABLE 4

ELEMENTAL ANALYSES OF SANDIA HYDROTREATING SAMPLES
FOR RUN ALC-1

Analysis, wt % as Determined	С	н	N	s	O (diff.)	Comment
Feedstock HTI PFL VSOH 227-90-10	88.24	8.39	0.67	1.17	1.54	Coal liquid odor, black
Products						
100-35-96C	88.3 8	10.47	0.08	0.18	0.89	NH ₂ odor
100-37-96A	8 8.65	10.68	0.04	0.13	0.50	NH, odor
100-38-968	88.5 6	10.52	<0.01	0.08	0.84	Sweet odor
100-311-96B	6 8.81	10.55	0.01	0.06	0.57	Sweet Odor
100-312-96B	88.60	10.60	<0.01	0.03	0.77	Sweet Odor
100-313-96B	88 .32	9.79	0.22	0.30	1.37	NH, odor
100-315-96A	88.50	9.86	0.28	0.46	0.90	NH, odor
100-316-96A	89.07	9.72	0.31	0.53	0.37	NH, odor

TABLE 5
PROTON DISTRIBUTIONS OF SANDIA HYDROTREATING SAMPLES FOR RUN ALC-1

			Proto	n Distributio	n, %			Microautoclave (a)
	Cond Arom	Uncond Arom	Cyclic Alpha	Alkyl Alpha	Cyclic Beta	Alkyl Beta	Gamma	Coal Conversion wt % MAF SO ₃ - free
Feedstock HTI PFL VSOH 227-90-10	20.4	8.4	16.2	11.9	11.8	21.0	10.3	80.9
Products 100-35-96C 100-37-96A 100-38-96B 100-311-96B 100-312-96B 100-313-96B	7.7 8.0 8.2 9.2 8.6 10.1	7.1 6.7 6.1 6.4 6.3 6.9	14.4 14.5 14.2 13.5 13.0 15.6	10.3 10.0 9.4 9.6 8.9 10.1	20.1 20.4 20.6 19.5 20.0 19.4	25.6 25.8 26.3 26.0 26.6 24.9	14.8 14.7 15.3 15.8 16.6 13.0	89.2
100-315-96A 100-316-96A	11.3 13.5	6.8 6.5	15.6 16.5	11.3 10.6	18.1 16.7	24.0 24.0	12.9 12.3	88.4

⁽a) Conditions: 5.45 g solvent, 4.55 Black Thunder Mine coal (1621-22-1), 840 °F, 30 min, 1500 psig cold H₂, 45 mL vessel, THF solubles.

TABLE 6

ANALYSIS OF HTI DEWAXED AND DEWAXED-HYDROTREATED OILS

			wt	%]
Sample	С	н	N	s	O (Diff)	Btu/lb	
HTI Dewaxed Oil for ALC-1 (a)	87.60	8.80	0.72	0.70	2.18	17,354	
			Prote	on Distributi	on, %		
Sample	Cond Arom	Uncond Arom	Cyclic Alpha	Alkyl Alpha	Cyclic Beta	Alkyi Beta	Gamma
HTI Dewaxed Oil for ALC-1 (a)	16.6	9.5	15.2	12.7	13.6	19.4	130
HTI Dewaxed-Hyrotreated Oil, 650 °F Fraction HTI Dewaxed-Hyrotreated Oil, 650 °F Fraction	10.0 5.2	6.1 6.5	17.4 13.6	10.4 9.8	19.6 22.6	22.2 24.6	14.2 17.8

⁽a) Acetone removed by CONSOL before analysis.

TABLE 7

ANALYSIS OF HTI BLACK THUNDER MINE COAL FOR AGGLOMERATION

		Black Thun	der Mine Coa	Black Thunder Mine Coal, HTI No. 6213			
	Drum 1	Drum 2	Drum 3	Drum 4	Average Drums 1-4 (a)	HTI No. 6392 Drum 6 (b)	Lab Composite Drums 1-4 (c)
Molsture, wt % As Determined Ash, wt % MF, Including SO,	10.00	10.00 6.31	9.98	9.65	9.91 6.23	8.47 6.34	9.70 8.28
Proximate, wt % MF. SO ₃ -Free Ash Basis Ash, SO ₃ -Free Volatile Matter Fixed Carbon	5.39 43.65 50.96	5.56 43.72 50.72	5.49 43.63 50.88	5.55 43.61 50.84	5.50 43.65 50.85	5.76 43.69 50.55	5,23 44,89 49,88
Ultimate, wt % ME, SO,-Free Ash Basis Carbon Hydrogen Nitrogen Sulfur Chlorine	71.00	71.21 4.69 0.92 0.52	71.05 4.68 0.91 0.49	71.05 4.73 0.91 0.48	71.06 4.69 0.92 0.50	69.83 4.67 0.96 0.44	70.72 4.7.4 1.00 0.49
Oxygen (by diff.) Ash, SO ₃ -Free	5.39	5.56	5.49	5.55	17.32	18.34	17.82 5.23
HHV, Blufb (MF)	12,066	12,061	11.81	11.57	11.78	11,753	11,967
Sulfur Forms, wt % ME Pyritic Sulfate Organic							0.00
Ash Elemental Analysis, wt % SiO, SiO, Alto, Alto, TiO, TiO, CaO MgO MgO Na,O K,O P,O, SiO, Undetermined							31.21 16.00 1.21 5.55 21.55 4.55 0.43 1.14 0.50

Drums 1-4 were the feed to aggiomeration production Runs C1-C9. Drum 5 was the feed to aggiomeration production Runs C10 and C11. Lab composite was the feed to laboratory aggiomeration tests. **3**20

TABLE 8

ANALYSES OF AGGLOMERATING OIL USED TO PRODUCE RUN ALC-1 FEEDS

Elemental Analysis, wt % As-Determ	ined			
	CONSOL Analysis, Det'n 1	CONSOL Analysis, Det'n 2	CONSOL Average*	HTI Analysis
Carbon	89.85	89.63	89.74	89.45
Hydrogen	8.82	8.80	8.81	9.16
Nitrogen	0.65	0.52	0.59	0.61 to 1.03
Sulfur	0.02	0.03	0.03	0.02
Oxygen (by diff.)	0.66	1.02	0.84	-
Heating Value (Btu/lb)	17,958	17,949	17,954	•
Proton Distribution, % Cond Arom Uncond Arom Cyclic Alpha Alkyl Alpha Cyclic Beta Alkyl Beta Gamma	14.9 5.4 16.7 8.7 14.6 27.6 12.1			

^{*}Average value used to calculate elemental composition of coal component of agglomerates.

TABLE 9

COMPOSITIONS OF PRODUCTION BATCHES OF AGGLOMERATES

	ខ	22	ខ	2	Ş	\$3	C6/C7	6	5	ຮ	Composite C2-C9	C10	25
Moisture, wt % as det. (a) Leco Oven	4.78 5.48	4.80 5.77	6.28 8.10	4.48	6.64	6.42 7.64	6.54 7.48	6.21	6.63 8.12	6.97	6.81	6.86	7.20
Proximate, wt % dry. Ash, SO ₃ -Containing Volatile Matter Fixed Carbon	3.10 55.80 41.10	2.73 56.15 41.12	2.74 56.35 40.91	2.86 56.29 40.85	2.80 56.30 40.90	2.67 55.91 41.42	2.76 56.21 41.03	2.71 55.53 41.76	2.72 58.02	2.72 56.28	2.7	2.78 56.52	56.96
Ultimate, wt % dry Carbon Hydrogen Nitrogen	75.16 6.20 0.86	75.06 6.07 0.85	48.8 0.80 2.80 2.80	74.44 6.27 0.84	74.85 6.32 0.85	74.71 6.25 0.85	86.09 80.09 80.09	74.76 6.08 0.85	74.70 6.37 0.86	74.06 6.13	75.00	73.19 6.21 0.83	75.29 6.75 0.86
Sulfur Ash, SO ₃ -free Oxygen (diff)	0.66 14.30	0.74 0.74 14.81	0.73 0.73 2.50 14.79	2.59 2.59 15.11	20,02 0.72 2.53 14.73	0.74 0.74 2.43 15.02	0.72 0.72 2.51 14.96	0.71 0.71 2.49 15.11	40.02 0.73 2.45 14.89	<0.020.712.4215.84	-0.02 0.74 2.51 14.83	40.02 0.69 2.44 16.64	40.02 0.68 2.57 13.85
HHV, Blufb dry	13462	13430	13412	13489	13487	13514	13458	13459	13443	13367	13559	13115	13452
Major Ash Elements, % lgnited at 750 °C SiO ₂ Al,O ₃ TiO ₂ TiO ₂ CsO MgO Na,O K,O P,O SO ₃ So ₃ So ₃ Ceco (b) Mo (mg/kg) Undetermined Sieve Size, mesh +4, wt % 8 x 8, wt % 8 x 4, wt % 4 x 28, wt % 8 x 48, wt %	45.08 23.68 2.17 2.17 2.02 3.83 3.83 5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.9	24.89 24.89 24.89 8.22 8.04 1.27 9.27 9.22 0.25 0.45	43.86 2.4.97 2.35 8.28 7.88 1.38 0.50 1.90 4.3 6.33 6.33 6.33 6.33 6.33 6.33 6.33	42.90 23.65 2.26 8.87 8.21 1.33 0.37 10.04 10.04 10.04 10.04 10.04 10.04	42.46 24.46 2.30 7.76 7.98 1.38 1.38 1.91 10.18 9.51 45 0.76	43.27 24.46 2.30 7.52 7.85 1.35 0.38 0.48 1.97 8.97 8.97 8.97 0.83	42.89 24.20 2.31 7.57 7.57 1.33 0.38 0.48 1.97 1.97 1.97 1.97	44.41 25.05 2.28 7.52 7.52 1.35 0.39 0.39 9.09 8.24 41 0.17	42.68 24.06 22.55 7.36 8.67 1.30 0.41 10.93 10.00 38.5 0.16	41.62 23.82 23.82 2.21 7.76 7.88 11.31 11.93 11.93 11.93	41.58 23.68 23.68 7.70 1.27 0.38 0.38 0.38 9.30 9.30 2.40 4.18 4.18 2.40 0.0	39.83 22.87 22.87 22.03 1.30 0.40 12.90 12.30 12.30 2.10 12.30 2.20 2.20 2.20	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.

Two moisture methods used: Leco TGA-501 instrument, and 100°C oven overnight. Oven method used to calculate composition of shipped material. Leco method used to calculate dry analyses shown here.
Sulfur by Leco SC-32 instrument. This value used to calculate SO₃-free ash content. This value was excluded from the calculation of the "Undetermined" components.

â

TABLE 10

COMPOSITION OF AGGLOMERATE PRODUCTS FROM RUNS C1-C10 (HTI Run ALC-1 Feedstocks)

							Bag No.					
	23	ည	2	22	ຮ	C7	83	63	C8+C7	5	C10	C2-C9 Avg. ± Std. Dev.
Composition, wt % of Whole Sample												
Moisture	5.77	8.10	8.65	7.90	7.64	7.79	8.12	8.67	7.48	5.48	9.32	7.58 ±0.93
Agglom. Oil	24.06	23.40	23.62	23.36	23.46	23.43	23.41	23.34	23.49	23.28	22.95	23.51 ±0.24
Ash, SO ₃ -Free	2.37	2.34	2.47	2.37	2.27	2.33	2.29	2.26	2.35	2.68	2.28	2.34 ±0.07
MAF Coal	67.81	66.15	67.25	66.37	66.63	66.44	66.18	65.73	89.89	68.55	65.45	66.57 ±0.68
MF Coal (MAF Coal + Ash)	70.17	68.50	69.73	68.74	68.90	68.78	68.47	62.39	69.03	71.24	67.73	68.9 ±10.71
Additional Analyses, wt % of Whole Sample, As-Determined	iple, As-D	etermined										
Carbon	71.61	70.14	71.11	88.68	69.92	70.12	69.76	68.90	69.97	72.17	68.17	70.18 ±0.84
Hydrogen*	6.31	19'9	6.49	6.64	6.58	6.40	69.9	6.48	6.42	4.9	6.55	6.52 ±0.13
Nitrogen	0.82	0.79	0.81	08.0	080	08'0	18.0	0.79	08.0	0.82	0.77	0.80 ±0.01
Sulfur	0.71	0.69	0.72	0.67	0.70	29'0	69'0	0.67	99:0	0.63	0.64	0.69 ±0.02
Heating Value, Blu/lb	12,812	12,570	12,886	12,592	12,647	12,624	12,553	12,435	12,578	12,819	12,216	12,640 ±145
Elemental Composition, wt % of MF Coal Portion of Agglomera	l Portion o	f Agglomen		ited on Oil-F	les (Calculated on Oil-Free, Moisture-Free, Ash-SO ₃ -Free Basis)	I-Free, Ash-	SO,-Free Bi	nsis)		-		
Ash, SO ₃ -Free	3.27	3.28	3,46	3.37	3.23	3.27	3.25	3.02	3.37	3.56	3.28	3.27 ±0.13
Carbon	71.36	71.84	71.64	71.22	70.98	71.46	21.28	70.74	70.84	71.29	70.29	71.31 ±0.35
Hydrogen**	5.05	5.31	5.26	5.37	5.30	5.04	5.43	5.09	5:09	5.31	5.15	5.23 ±0.15
Nitrogen	96.0	0.95	96.0	96.0	96.0	96.0	96.0	96.0	96.0	96.0	0.94	0.96 ±0.01
Sulfur	1.01	0.99	1.03	0.97	1.00	0.98	0.99	0.97	0.97	0.88	0.94	0.99 ±0.02
Oxygen (by diff.)	18.36	17.62	17.66	18.12	18.53	18.31	18.09	19.21	18.77	18.00	19.41	18.24 ±0.51

Includes hydrogen from moisture (as-determined basis).
 Corrected to exclude hydrogen from moisture.

TABLE 11

ANALYSIS OF DRY ACETONE SOLUBLES
OF COMPOSITE RUNS C2-C9 AGGLOMERATES

	wt %
С	86.94
Н	8.06
N	0.42
S	0.09
O (diff.)	4.49

		Proto	n Distributi	on, %		
Cond Arom	Uncond Arom	Cyclic Alpha	Alkyl Alpha	Cyclic Beta	Alkyl Beta	Gamma
13.8	5.2	15.1	8.6	14.7	29.6	13.0

TABLE 12

ANALYSIS OF DRY ACETONE INSOLUBLES
OF COMPOSITE RUNS C2-C9 AGGLOMERATES

	
Moisture, wt % As Determined Ash, wt % MF, including SO ₃	1.37 3.38
Proximate, wt % MF, SO ₃ -Free Ash Basis Ash, SO ₃ -Free Volatile Matter	3.02 46.77
Fixed Carbon	50.21
Ultimate, wt % MF, SO ₃ -Free Ash Basis	
C	70.68
(ห)	4.84
N	1.08
S, Total	0.93
S, Pyritic	0.26
S, Sulfate	0.46
S, Organic	0.21
O (diff.)	19.45
Ash, SO ₃ -Free	3.02
HHV, Btu/lb, MF Basis	11,885
Ash Elemental Analysis, wt %	
SiO ₂	42.91
Al_2O_3	25 .63
TiO ₂	2.04
Fe ₂ O ₃	6.63
CaO	8.19
MgO	1.32
Na ₂ O	0.49
K₂Õ	0.62
P ₂ O ₅	1.86
SO ₃	10.58
Undetermined	-0.27

TABLE 13

ANALYSES OF ASHED FILTER CAKES OBTAINED WITH RINSING

	<u> </u>				wt	%, as dete	rmined				
	Cf	C2	C3	ठ	C5	C6	C7	C8	C9	C10	C11
SiO ₂		20.24	14.22	27.15	18.41	21.91	41.54	20.04	24.30	24.60	13,16
Al ₂ O ₃	1	0.23	0.41	0.47	0.52	0.57	2.07	0.56	0.80	0.24	0.27
TiO ₂		0.03	0.02	0.03	0.03	0.04	0.06	0.06	0.04	0.03	0.03
Fe ₂ O,		0.21	0.25	0.48	0.49	0.45	0.88	0.42	0.50	0.29	0.62
CaO		32.06	29.90	25.49	28.40	27.74	20.45	31.40	30.27	30.50	34.69
MgO	i i	0.03	0.08	0.03	0.04	0.05	0.04	0.21	0.05	0.03	0.09
Na ₂ O	1	0.02	0.05	0.02	0.03	0.03	0.03	0.06	0.06	0.02	0.04
K,Ö	1 1	0.04	0.04	0.06	009	0.05	0.08	0.05	0.06	0.04	0.03
P.O.	1	0.03	<0.01	<0.01	<0.01	<0.01	0.07	<0.01	0.01	<0.01	<0.01
so,		46.62	52.54	44.65	49.95	47.36	33.23	46.45	43.80	44.73	51.01
Undetermined		0.49	2.49	1.62	2.04	1.80	1.55	0.75	0.11	-0.48	0.06

*No analysis

TABLE 14

ANALYSES OF FILTRATES OBTAINED WITH RINSING

				C	oncentrati	on, mg/L, a	s determine	ed .			
	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
SiO ₂	12.09	17.83	24.85	11.27	16.23	13.31	11.15	13.07	14.20	12.45	12.51
ALO,	133.56	251.00	436.75	170.36	260.36	214.42	133.19	208.10	169.56	218.01	218.43
TiO,	0.01	0.08	0.04	0.18	0.17	0.13	0.15	0.14	0.12	0.13	0.14
Fe ₂ O ₃	139.66	257.36	363.70	152.48	213.67	208.51	116.23	164.45	151.17	216.44	226.09
CaO	741.13	731.07	733.40	742.92	724.11	754.64	790.35	730.48	764.61	745.50	743.89
MgO	250.91	36 8.86	641.53	263.09	398.22	321.33	207.60	310.13	268.17	345.67	369.30
Na ₂ O	108.46	147.94	340.94	181.98	293.49	194.36	169.63	202.12	168.77	187.01	175.02
KÖ	13.37	14.66	28.08	10.61	16.14	12.80	8.56	37.05	12.36	12.11	14.08
K ₂ O P ₂ O ₆	3,40	11.93	15.03	6.54	8.01	8.41	4.48	6.76	5.37	10.22	9.01
so,	2628.50	3729.50	5449.00	2843.00	3597.00	3283.00	2470.00	3216.00	2851.00	3455.00	3517.00
Acidity, mg/L CaCO ₃	1093	2105	3251	1208	1653	1568	823	1550	1195	1793	1844
pН	2.30	2.01	1.88	2.28	2.25	2.19	2.61	2.22	2.31	2.08	2.06

TABLE 15

ANALYSES OF FILTER CAKES OBTAINED WITHOUT RINSING

	C7	C9	C11
Moisture, wt %, as determined	0.59	1.60	3.96
Ash, wt % of dry cake	97.83	98.16	98.31
Ash Elemental, wt % of Ash			
SiO ₂	8.44	11.24	6.63
Al ₂ O ₃	0.72	0.13	0.08
TiO ₂	0.01	0.01	0.01
Fe ₂ O ₃	0.13	0.10	0.09
CaO	35.64	34.35	3 6.83
MgO	0.13	0.09	0.03
Na ₂ O	0.06	0.05	0.02
K₂Õ	0.02	0.01	0.01
P ₂ O ₅	<0.01	<0.01	<0.01
SO ₃	53.51	50.96	53.78
Undetermined	1.34	3.06	2.52

TABLE 16

ANALYSES OF FILTRATES OBTAINED WITHOUT RINSING

·	Concentrati	on, mg/L, as dete	rmined
	C7	C9	C11
SiO ₂	40.07	36.33	28.09
Al ₂ O ₃	1061.00	979.33	8 66.62
TiO ₂	0.19	0.18	0.09
Fe ₂ O ₃	769.89	729.36	764.01
CaO	675.39	676.63	680.25
MgO	1589.00	1502.00	1436.00
Na₂O	543.67	522.67	549.35
K₂Ō	61.13	70.72	53.10
P ₂ O ₅	31.25	30.36	36.25
SO ₃	11050	10690	10440
Acidity, mg/L CaCO ₃	78 79	7719	7702
pH	1.53	1.49	1.46

SECTION THREE

Hydrocarbon Technologies, Inc.

Theo L.K. Lee Vice President

June 5, 1996

Via Facsimile & Regular Mail

Dr. Ed Givens
Center for Applied Energy Research
University of Kentucky
3572 Iron Works Pike
Lexington, KY 40511-8433

RE: DOE Advanced Coal Liquefaction Concepts - Phase II Program
Sub Contract: UKRF 425582-96-152
May/96 Report

Dear Ed:

Works undertaken during this report period include:

- 1. Completed Run ALC-01
- 2. Continuing with Product Workup on TBP fractions
- 3. Preparing the ALC-01 Run Report
- 4. Forwarded all the required samples to Consol

A list of operational recommendations is attached for your comment. A draft run report will be issued by the week of June 10-14 for your review and comment.

Sincerely,

Theo L.K. Lee

LKL/dms Enclosures

cc: R. Winschel - via regular mail

M. Peluso - via regular mail

Future Unit 227 operations that mimic Run 94 parameters would have the following operational issues to address:

A - Feed Blending

B - Achieving 650+ Extinction

C- Improving Filtration Cycle Time

D - Controlling Distillation Cut Points

E - Shortening Equipment Cycle Times for Dewaxing

A short discussion of each of these items follows.

A - Feed Blending

Prior to run 94 operations, it was thought that in order to quickly change the solids content of the feed it would be necessary to produce the feed blends on a 1 to 2 hour basis. However, such fine control of the feed blend solids content never really became an issue. Utilizing already established 6 hour blending procedures would be acceptable for future operations. In addition, this procedure would enable a more thorough and longer feed blend mixing.

B - Achieving 650+ F Extinction

The procedures established during run 94 operations, namely diluting the filter feed blend with a distillate material to control the feed viscosity and then vacuum distilling the pressure filter liquid (PFL) should be adopted as part of the operating strategy. This will enable an extinction of the 650 + F fraction of the PFL. In addition, the temperatures of the hot separator (O-1) and atmospheric flash vessel (O-3) should be adjusted to remove as much 650- F material as possible prior to pressure filtration

C - Improvements to Filtration Cycle Time

The filtration cycle time is mainly determined by unit material production and the physical work needed to turn a filter around. A two hour cycle time is about the practical minimum. For the majority of run 94, this was achieved. Long filtration times are usually attributed to a high viscosity feed. The only improvements would be to increase the surface area, decrease the amount of feed or lower the viscosity of the feed. A larger plate filter is presently under going commissioning. The addition of distillate material to the feed is used to control the viscosity.

D - Controlling Distillation Cut Points

The bench unit vacuum distillation system is a simple single stage flash. To ensure that the distillation cuts meet specifications, the comparison between laboratory analysis and plant vacuum distillation should be closely monitored. Any needed adjustments to the batch vacuum still could be quickly made.

E - Shortening Equipment Cycle Times for Dewaxing and Hydrotreating

The relatively long dewaxing/hydrotreating equipment cycle time is not easily reduced. A number of different equipment cycles must be optimized to show a significant change in the present two day lag. However, the impact of the following equipment and procedure modifications should be investigated.

- A Larger dewaxing vessels that could substitute for blending vessels
- B Product flash system to remove a large portion of the acetone prior to distillation
- C Possibly a larger hydrotreater may be needed if the preceding items decrease the lag time significantly

SECTION FOUR

LDP Associates

LDP ASSOCIATES

Michael Peluso, Proprietor 609-586-2301

32 Albert E. Bonacci Dr. Hamilton Square, N.J. 08690

August 12, 1996

Dr. Ed Givens
Center for Applied Energy Research
3572 Iron Works Pike
Lexington, Kentucky 40511-8433

Dear Ed:

Subject: **OUARTERLY PROGRESS REPORT FOR APRIL THRU JUNE 1996**

For the quarter ending June 30, 1996 the following subcontract services (UKRF-4-25582-92-75) were performed in support of the DOE Advanced Concepts Program (DE-AC22-91PC91040):

SUPPORT FOR ALC-1

During the quarter the first continuous bench scale run, ALC-1 was made at HTI.

Prior to the run, the results of SANDIA's work on hydrotreating a vacuum still overhead (VSOH) supplied by HTI was reviewed. It was found that, at the conditions used, a significant amount of 343°C+(650°F+) distillate present in the feed was converted to 343°C-(650°F-) material. Since this is not advantageous in this particular situation, CONSOL and HTI were advised of this finding and it was recommended that HTI conduct its pre-ALC-1 dewaxed oil hydrotreating at the lowest possible thermal severity. The use of an alternative catalyst to achieve the desired high degree of aromatics saturation was briefly investigated.

During ALC-1, LDP participated in the daily meetings at HTI, monitored run conditions and results, performed data analysis and assisted in planning operating conditions. CONSOL and CAER were kept up to date on run activities when their representatives weren't onsite. Post run meetings were held with HTI to collect and review run and analytical data and discuss material balancing procedures.

An elementally balanced computerized material balance procedure was developed and used to calculate yields, hydrogen consumption, distillate boiling range yields and estimated distillate product properties for the liquefaction section of the five run conditions (see Attachment #1, Condition #5). An estimated material balance was also prepared for the distillate solvent dewaxing and hydrotreating system of Condition #5 (see Attachment #2) in order to estimate overall yields and hydrogen consumption.

A preliminary analysis of ALC-1 was presented at the ALC-1 Review Meeting at HTI on June 18th (see Attachment #3). Suspect run data was identified and recommendations were made for achieving more reliable results in future ALC runs at HTI.

ALC-2 RUN PLAN

A meeting was attended with CAER and HTI representatives to discuss the preliminary concept and process configuration improvements for run ALC-2.

ECONOMIC ASSESSMENT No activity.

Very truly yours.

Michael Peluso LDP Associates

cc: F. Derbyshire @ CAER

R. Anderson @ CAER

R. Winschel @ CONSOL

T. Lee @ HTI

ATTACHMENT #1

ELEMENTALLY BALANCED MATERIAL BALANCE FOR CONDITION #5

		2	3	4.	5	9	7	8
-								
2	Condition #5 Liq'n C	Liq'n Only						
3	Period #25							
4								
5	· · · · ·	Grams	O	I	0	Z	S	SO3-Free Ash
9	<u>.</u>	22399	71.07	4.69	17.32		0.50	
7	:;	6868	88.10	8.47	2.02	0.65	0.76	0.00
8		5.38	11.00	1.80	00.0	4.30	39.10	43.80
6	·	224	0.00	00.0	0.00	0.00	0.00	100.00
10		086	0.00	5.92	00.0	00.0	94.08	0.00
1.1		1893	53.52	9.48	00.0	00.0	37.00	00.0
12	٠٠٠٠٠٠	6630	89.70	5.51	3.12	1.41	0.26	00 0
13	Recycle DW-HT(P23)	12663	90.20	9.34	0.11	0.23	0.12	00 0
14		7397	50.46	3.57	7.12	0.51	7.22	31.12
1 5		58038	44085	3681	4766	411	2336	3760
1 6								
17								
18								
1 9								
20								
2.1								
22		• • • •						
23		• • • • • • •						
24								
25								
26								
27								
28								

CAER AC : ALC-1, CONDITION #5 (Period 25)

	-	2	3	4	2	9	7	æ
6	MAF/MF Coal	0.945		Frac. of C1-C3		Frac of C4.C7		
6	0,4	0 0		5	• • • •	5		rraction
ا د	SOUTH MAT COM	10.32	5	0.305	2	0.47	8	
-1	C4-C7 YId MAF Coal	4.27	S	0.305	CS-C7	0.53	200	
2	% COx Yid MAF Coal	6.76	${f g}$	0.390				
8	OUTPUT STREAMS	Grams	O		0	Z	S	SO3-Free Ash
4	H2O Net	0.00		11.19	88.81	0 0 0	0.00	
2	H2S	0.00		5.92	0.00	0.00	94.08	00 0
9	NH3	0.00	0.00	17.76	0.00	82.24	0.00	000
~	8	372.03	N	00.0	57.12	0.00	00.0	0.00
8	සූ දිරි	1058.86	27.29	00.0	72.71	0.00	0.00	0.00
6	5	666.25	74.86	25.14	0.00	00.0	0.00	0.00
0	22	666.25	79.88	20.12	0.00	0.00	0.00	000
-1	ຮ	851.93	81.71	18.29	0.00	0.00	0.00	0.00
2	20	422.09	82.66	17.34	0.00	00.0	0.00	0.00
60	C\$+ Gas	481.74	83.81	16.19	0 0 0	00.0	0.00	0.00
4	© HOS	8657.00	86.74	12.79	0.25	0.11	0.11	0.00
2	VSOH 1	00.0	00.0	00.0	0.00	00.0	0.00	0.00
9	975F- VSOH	22586.00	89.51	8.68		0.53	0.15	0.00
~	NSB	7526.00	89.70	5.51	3.12	4.4	0.26	0.00
8	머니	11237.00	50.46	3.57	7.12	0.51	7.22	31.12
6	Total	54525.17	43075.04	4492.09	2294.15	292.65	874.28	3496.95
0	•		CARBON	BALANCE				สรียกกราชกรรมการกระกรรม รัฐ
_	ASH BALANCE		C in PFC Out	6097.10			Secondario e e e e e e e e e e e e e e e e e e e	oljenom nemom nemom na S
2	8	3496.95	Bal. of C Out	37404.85			denomentamente de la constante de la constante Establisha de la constante de	
3	2	3760.24						
4	PFC Out Adjust Factor	1.0753	Ch	44085.06				
5	PFC Out for Ash Bal.	12083.03 Cln-	C In - C In PFC	37987.97				
9			Bal C Out A. F.	1.01559				
			,	***************************************				

0	Σ .				SO3-Free Ach						000	0000	0000	0.00	0.00	00.0	0.00	0.00	0.00	31.12	3760.24	Washington and American	****************	4998.94	3680.73	1318.22	u
7					ď	000	94 08	000	00.0	00.0	00.0	00.0	00.0	0.00	0.00	0.11	0.00	0.15	0.26	7.22	2336.36	936.35	H BALANCE	1 50	N.	CONSUMED	W % MF Coal
9	>				Z	00 0	00 0	82.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.53	1.41	0.51	411.28	300.64		2336.36	936.35	1400.02	1488 11
5					0	88.81	0 00	0.00	57.12	72.71	0.00	0.00	0.00	0.00	0.00	0.25	0.00	1.13	3.12	7.12	4765.69	2377.68	SBALANCE	N.	OUT - H2S	S IN H2S	H2SOUT
4					*********** ±	11.19	5.92	17.76	0.00	0.00	25.14	20.12	18.29	17.34	16.19	12.79	0.00	8 68	5.51	3.57	4998.94			411.28	300.64	110.64	134.53
3					ပ	00.0	00.0	0.00	42.88	27.29	74.86	79.88	81.71	82.66	83.81	86.74	00.0	89.51	89.70	50.46	44085.06		N BALANCE	Z	OUT - NH3	N IN NH3	NH3 OUT
2					Grams	0.00	0.00	00.0	377.83	1075.37	676.64	676.64	865.21	428.67	489.25	8791.96	0.00	22938.10	7643.33	12083.03	60357.58			4765.89	2377.68	2388.01	2688.90
-					·	H2O Net	H2S	EHN	9	.0		C2	ဌ	2	C5+ Gas	ID HOS	VSOH 1	975F- VSOH	#SA	PFC	Total w/H2O,H2S,NH3	Total exH2O,H2S,NH3	O BALANCE	2	OUT - H2O	O IN H2O	H2OOUT
	57	58	5 9	0 9	1 9	6.2	63	6 4	6 5	99	2 9	8 9	6 9	2 0	1 1	7.2	73	7 4	7.5	9 2	7.7	7 8 7	6 2	8 0	- 2	8 2	83

-	2	3	4.	5	9	2	8
		Wt.% MF Coal				Wt % MAF Coal	
	GROSSYIELDS	INPUTS	NET YIELDS			NETVIELDS	
H ₂ O	12.00	0.00	12.00			12.70	
H2S	6.64	7.41	-0.77			-0.81	
SHN	09.0	00.0	0.60			C	
8	1.69	0.00		Š	6.49	e e	
g	4.80	00.0	4.80				
Ð	3.02		•. •	C1-C3	06.6	10.48	
C2	• • • • •	0.00			and and and and and		
ဗ	3.86	0.00	္ထ				
2	1.91		1.91				
C5 - Gas	2.18	0.00	2.18		anarahan habanan	(n)	
SOHOIL	39.25	5.32	33.93				
W-HT(P23)	00.0	56.53	-56.53			-59	
975F- VSOH	-	00.0	102.41				
ASA		29.60	4.52				
26	53.94	33.02	20.92				
Preprepared DW-HT	00.0	30.66	-30.66				
MOLYVANA	0.00	0.02	-0.02			0	
Fe2O3	00.0	1.00	-1.00				
Total	269.47	163.58	105.89			112.05	
		H2 Consumed	5.89			6.23	
		H2 for TNPS	0.24			0.25	
		Net H2 Cons'd	5.65			5	
							

CAER AC : ALC-1, CONDITION #5 (Period 25)

		2	3	4	S	9	7	60
		ununun.						
	BOILING RANGE SUMMARY	SUMMARY						
• .		NET YIELD						Solide
• •		Wt. % MF Coal	1BP-350 F	350-500 F	500-650 F	650-850 F	850-975 F	975 F±
	2		100.00	0	00.0	0.00	0	
	+ \$0		100.00	0.00	0.00	00 0	C	000
•	SOHOL	33.93	29.80	24.40	30.40	15.40	C	
. •			00.0	00.0	4.80	82.70	12.50	000
• •	975F- VSOH	102		2.50	18.60	70.60		
•. •	as/			00.0	00.0	0.00	2 30	
	PFC		0.00	0.88	6.48	24.54		C
	Preprepared DW-HT			0.00	3.90	87.70	4	00 0
	Total	78.68	14.21	11.02	26.81	9.01		6 7 3
-			Wt.% MAF Coal				• •.	
	C4 - 975 F	50.67			Wt.% Solids	Wt.% SO3 Free	W.%	Wt %
:					in PFC	Ash in PFC	975 F+ in PFC	975 F. in PEC
•	Solids Free 975 F+	6.73	7.12		53.92	31.12	11.03	35.05
					Wt.% MAF Coal			
	Solids	-	11.94		Conversion			
	• IOM	4.77	5.05		94.66			
	· SO3 Free Ash							
·		1BP-350F	15.04					
•		350-500F	11.68					
•:		500-650F	28.37					
• •		850-850F	9.54					
		850-975F	-0.40					
		Total	64.20					
				·				

		2	3	4	5	9	7	8
4 1		MF Coal		I	0	z	S	SO3-Free Ash
42	HOS soup		86.74	· 1			-	
43	- C9H19 from TNPS	5.32	6	15.05	0.00	00.0	000	
44	8		.0	₹			0 13	
45								
46	#SA	52	89.7		3.12	4.4	0.26	
47	975+ in VSB	1.42	89.6	5.50	3.13	1.42	0.28	000
48	975- in VSB	0.10	90.12		2.70	0.99	0.26	
49								
50	VSOH-1	00	0	:0	0.00		00.0	00 0
5 1	975F- VSOH	7.28	89.51	8.68	1.13		0.15	00.0
52	6		90.1	5.93	2.70	66.0	0.26	00.0
53	975 - in PFC	7.33	89.51	8.66	1.14		0.15	00 0
54							and a second control of the second control o	
55	Agglomerating Oil	0.00	0.00	00.0		0.00	0 0 0	0.00
56	- 975+ in Agglom Oil	0.00	0	00.0	0.00	0.00	0.00	0.00
57	975- in Agglom Oil		0	0		0.00	00.0	0.00
58		:						
59	2 5							
0 9			82	က	00.0	0.00	0.00	
6 1	• C5+ Gas		83.8	-	0.00	0.00	00.0	
62		33.93		12.44	0.29	0.13	0.13	
63		56.53	90	က	0.11	0.23	0.12	
6 4	6	102.41	89.5		, 130 130 130 130 130 130 130 130 130 130	0.53	0.15	
S	•	10	90.12	တ	2.70	0.99	0.26	
9 9		•	: :	9	*	0.53	0.15	
29	Preprepared DW-HT		88.10		2.02	0.65	0.76	00.0
168	TOTAL C4 to 975F	60.67	87.77	10.81	1.09	0.49	-0.15	
	•	-						

ATTACHMENT #2

ESTIMATED MATERIAL BALANCE FOR DISTILLATE SOLVENT DEWAXING & HYDROTREATING - CONDITION #5

DEWAXING & HYDROTHEATG BALANCE DEWAXING & HYDROTHEATG BALANCE DEWAXING & HYDROTHEATG BALANCE DEWAXING & HYDROTHEATG BALANCE DEWAXING & DEWAXING & DEWAXING & DEWAY DEWAXING & DEWAY DEWA	\dashv	•	2	ဇ	4.	ស	9	7	α
DEWAXING & HYDPOTHEATOR BALLANCE C H O N WILWORT Tool 30 NETYRELD C H O N 975E- VSOH From Liquettrin Massured DWHTPUTS 100.00 102.11 Bis 5:1 Bis 68 11.13 0.53 MEASURED CWITPUTS 28.86 29.55 88.99 10.74 0.06 0.016 DWHT VSOHL3 28.86 67.64 89.76 9.82 0.43 0.16 DWHT VSOHL3 28.86 10.16.7 88.72 0.43 0.73 0.73 Unrefined Wash 4.37 4.48 85.06 0.75 0.73 0.73 Unrefined Wash 4.37 0.46 0.41 0.44 78.82 0.45 0.73 Unrefined Wash 0.16 0.10 0.10 0.10 0.70 0.00 0.00 C5.46as 0.16 0.10 0.10 0.10 0.10 0.00 0.00 0.00 Hydrogen Consumed 1.13 1.14 1.14	6								>
INDUIT Trom LiqueFirm Wit We for INDUIT Trom LiqueFirm Wit WHITD C	10	DEWAXING &	HYDROTREATG	BALANCE					
INPUT	_		Wt.% of						
INPUT			975F- VSOH	NET YIELD					
975F - VSOH from Ltd 100 00 102 41 89.51 8.68 1.13 0.53 MEASURED OUTPUTS DW-HT VSOH-1 28.86 29.55 88.99 10.74 0.00 0.18 DW-HT VSOH-2 68.05 67.64 89.76 83.76 9.82 0.21 DW-HT VSOH-2 68.05 67.64 89.76 83.72 0.59 0.21 DW-HT VSOH-2 68.05 67.64 88.78 13.22 0.59 0.21 DW-HT VSOH-2 68.05 101.67 88.78 17.34 0.00 0.19 NO-MARCAS DOUTPUTS NA-COT 0.40 0.41 78.82 21.18 0.00 0.00 CS- Gas 0.10 0.10 82.66 17.34 0.00 0.00 LCAS- Gas 0.28 0.29 85.00 17.76 0.00 0.00 LCAS- Gas 0.04 0.00 17.76 0.00 0.00 0.00 Hydrogen Consumer 0.00 0.00 0.00 0.00 </td <td></td> <td>INPUT</td> <td>from Liquefitn</td> <td>Σ</td> <td>O</td> <td>I</td> <td>0</td> <td></td> <td>U</td>		INPUT	from Liquefitn	Σ	O	I	0		U
MEASURED OUTPUTS DW.HT VSOH-1 28.86 25.55 88.99 16.74 0.06 0.16 DW.HT VSOH-1 28.86 67.64 89.76 9.30 0.62 0.21 DW.HT VSOH-1 66.05 67.64 89.76 9.82 0.62 0.21 Unrefined Wax 4.37 4.48 85.86 13.22 0.59 0.21 Unrefined Wasured 99.28 101.67 9.82 0.43 0.16 Total Measured 0.10 0.41 78.82 21.18 0.00 0.00 C3- Gas 0.19 0.19 0.19 0.09 0.00 0.00 0.00 LBP-350F 0.28 0.29 85.00 17.76 0.00 0.00 Total Measured 1.148 1.51 0.00 0.00 0.00 0.00 Hydrogen Consumed 1.48 1.51 0.00 0.00 0.00 0.00 C4 10.00 0.00 0.00 0.00 0.00		975F- VSOH from Liq.	100.00	102.			A Company		,
MEASURED OUTPUTS DW-HT VSOH-1 28.86 29.55 88.99 10.74 0.06 0.16 DW-HT VSOH-2 68.05 67.64 89.76 9.30 0.62 0.21 DW-HT VSOH-2 68.05 67.64 89.76 9.30 0.76 0.21 DW-HT VSOH-2 68.05 67.64 89.76 9.30 0.21 0.21 DW-HT VSOH-2 68.05 67.04 0.79 0.79 0.79 0.21 DW-HT VSOH-2 68.05 67.07 0.79 0.79 0.79 0.79 MONAMEAST DOURDING 1.00 0.41 78.82 21.18 0.00 0.00 CS-GAS 0.19 0.19 83.81 16.19 0.00 0.00 CS-GAS 0.19 0.28 85.00 17.76 0.00 0.00 IBP-350F 0.21 0.04 0.04 0.00 0.00 0.00 MARCOLLAR MARCO	10								0.7.0
DW-HT VSOH-1 28.86 29.55 88.99 10.74 0.00 0.16 DW-HT VSOH-2 66.05 67.64 89.76 9.30 0.62 0.21 Unrefined Wax 4.37 4.48 85.86 13.22 0.59 0.21 Unrefined Wax 4.37 4.48 85.86 13.22 0.59 0.21 Unrefined Wax 4.37 4.48 85.86 13.22 0.59 0.21 MONAMEASDOUTPUTS IN OUT 0.79 0.79 0.70 0.70 0.00 C5+Gas 0.10 0.41 78.82 21.18 0.00 0.00 C5+Gas 0.18 0.19 83.81 15.34 0.00 0.00 IBP-350F 0.78 0.00 17.76 0.00 0.00 IbM-000A 0.01 0.00 17.76 0.00 0.00 C5+Gas 0.01 0.00 0.00 0.00 0.00 Mon-Meed Carb. Spill 0.04 0.00 0.00	100	•••••							
DW-HT VSOH-2 66.05 67.64 89.76 8.30 0.62 0.21 Unrefined Wax 4.37 4.48 85.86 13.22 0.59 0.21 Unrefined Wax 4.37 4.48 85.86 13.22 0.59 0.21 Total Messured 99.28 101.67 88.72 9.82 0.43 0.19 NON-MEASDOUTPUTS IN-OUT 0.78 0.41 0.41 78.82 21.18 0.00 0.00 C1-C3 0.40 0.41 78.82 21.18 0.00 0.00 C5+Gas 0.19 0.19 82.66 17.34 0.00 0.00 IBP-350F 0.28 0.29 85.00 0.00 0.00 0.00 IBP-350F 0.78 0.04 0.04 0.00 17.76 0.00 0.00 IBP-350F 0.01 17.76 0.00 0.00 0.00 0.00 IBP-350F 0.01 0.02 0.00 0.00 0.00 0.00 </td <td><u> </u></td> <td></td> <td>٠</td> <td>29</td> <td></td> <td>10.74</td> <td></td> <td>٠.</td> <td>• • •</td>	<u> </u>		٠	29		10.74		٠.	• • •
Unrefined Wax 4 . 37 4 . 48 85.86 13.22 0.59 0.21 Total Measured 99.28 101.67 88.72 9.82 0.43 0.19 NON-MEASDOUPPUTS IN-OUT 0.79 0.79 0.70 0.00 0.00 C1-C3 0.40 0.41 78.82 21.18 0.00 0.00 C3-Gas 0.19 0.19 82.66 17.34 0.00 0.00 LBP-350F 0.28 0.29 85.00 15.00 0.00 0.00 HZO 0.78 0.80 0.00 11.19 88.81 0.00 0.00 HZO 0.78 0.80 0.00 17.76 0.00 0.00 MH3 0.41 0.04 0.00 5.92 0.00 0.00 Total Meast-Non-Me. 10.148 1.51 1.48 1.13 0.00 Mon-Mest Carb. Spill % 0.00 5.92 0.00 0.00 C4 0.00 5.92					89.76		0 62		
Total Measured 99.28 101.67 88.72 9.82 0.43 0.19 NON-MEASD OUTPUTS IN-OUT 0.79 0.79 0.70 0.34 C1-C3 0.40 0.41 78.82 21.18 0.00 0.00 C3 0.10 0.10 0.10 82.66 17.34 0.00 0.00 C5-Gas 0.19 0.19 82.67 17.34 0.00 0.00 IBP-350F 0.28 0.09 17.76 0.00 0.00 NHA 0.41 0.04 0.00 17.76 0.00 0.00 Hydrogen Consumed 1.18 1.51 1.48 1.51 0.00 0.00 C1-C3 0.00 1.148 1.51 0.00 0.00 0.00 Hydrogen Consumed 1.148 1.51 0.00 0.00 0.00 C1-C3 0.00 0.00 0.00 0.00 0.00 C1-C3 0.00 0.00 0.00 0.00 0.00	·	Unrefined Wax	4.37	4	85.86		65.0		
NON-MEASDOUTPUTS C1-C3 C3+	 	Total Measured	99.28		88.72	့ထ	0.43		
NON-MEASDOUTPUTS C1-C3				: •	0 79		0.2.0		- 4
C1-C3 0.40 0.41 78.82 21.18 0.00 0.00 C4 0.10 0.10 82.86 17.34 0.00 0.00 C5+Gas 0.19 0.19 83.81 16.19 0.00 NH3 0.41 0.42 0.00 17.76 0.00 NH3 0.41 0.04 0.00 5.92 0.00 Total Meas'd-Kloin-Me. 10.18 1.51 10.16 1.19 0.53 Hydrogen Consumed 1.48 1.51 1.48 1.51 Non-Mes'd Carb. Spill % C1-C3 10.00 C5+Gas 20.00 C5+Gas 20.00 C5+Gas 20.00 C5+Gas 20.00		NON-MEASD OUTPUTS					• :		
C4 0.10 0.10 82.66 17.34 0.00 0.00 C5+Gas 0.19 0.19 0.19 0.19 0.00 0.00 IBP-350F 0.28 0.29 85.00 15.00 0.00 0.00 H2O 0.78 0.90 0.00 17.76 0.00 0.00 NH3 0.41 0.42 0.00 17.76 0.00 82.24 Hydrogen Consumed 1.048 1.51 1.48 1.13 0.53 Hydrogen Consumed 1.48 1.51 0.53 Hydrogen Consumed 1.48 1.51 0.53 Hydrogen Consumed 1.51 1.48 0.50 C1-C3 40.00 0.00 0.00 C3-C3 20.00 0.00 0.00 C5+ Gas 20.00 0.00 0.00 C5+ Gas 20.00 0.00 0.00 C5+ Gas 20.00 0.00 0.00 C6+ Gas 20.00 0.00 0.0		C1-C3	0.40	0	∵∞	21.18	00 0		00 0
C5+ Gas 0.19 0.19 0.19 0.19 0.00 0.00 IBP-350F 0.28 0.29 85.00 11.19 88.81 0.00 H2O 0.78 0.242 0.00 17.76 0.00 82.24 NH3 0.41 0.042 0.00 17.76 0.00 82.24 H2S 0.04 0.04 0.00 5.92 0.00 0.00 Hydrogen Consumed 1.48 1.51 1.48 1.18 0.53 Hydrogen Consumed 1.48 1.51 0.50 0.00 C1-C3 40.00 1.51 0.53 0.50 C3+ Gas 20.00 20.00 0.00 0.00 C5+ Gas 20.00 20.00 0.00 0.00 BBP-350F 30.00 0.00 0.00 0.00		2			82.66	္က	00.0	00 0	00 0
IBP-350F	·	C5+ Gas			83.81	_	0.00	0.00	00 0
H2O 0.78 0.80 0.00 11.19 88.81 0.00 NH3 0.41 0.42 0.00 17.76 0.00 82.24 H2S 0.04 0.04 0.00 5.92 0.00 0.53 Total Meas'd-Non-Me. 101.48 1.51 1.51 1.48 1.48 Non-Mes'd Carb. Split % C1-C3 40.00 C3 10.00 C4 10.00 C5+Gas 20.00 IBP-350F 30.00	·	18P-350F		0	85.00	ः०	00.0	00 0	00 0
NH3 0.41 0.42 0.00 17.76 0.00 82.24 H2S 0.04 0.04 0.00 5.92 0.00 0.00 Total Meas'd+Non-Me. 101.48 103.92 89.51 10.16 1.13 0.53 Hydrogen Consumed 1.48 1.51 1.48 0.53 Non-Mes'd Carb. Split % C1-C3 40.00 C4 10.00 C5+ Gas 20.00 C5+ Gas 20.00		HZO		0		-	88.81	0.00	00 0
H2S 0.04 0.00 5.92 0.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0		NH3			0.00	~	00.0		0.00
Total Meas'd+Non-Me. 101.48 103.92 89.51 10.16 1.13 0.53 0 Hydrogen Consumed 1.48 1.51 1.51 Non-Mes'd Carb. Split % C1-C3 40.00 C5+Gas 20.00 IBP-350F 30.00	·	H2S	0	0	00.0	•	00.0		94.08
Hydrogen Consumed 1.48 1.51 Non-Mes'd Carb. Split % C1-C3 40.00 C4 10.00 C5+Gas 20.00 IBP-350F 30.00		Total Meas'd+Non-Me.	101.48	103	·: •				
Non-Mes'd Carb. Split % C1-C3 40.00 C4 10.00 C5+Gas 20.00		Hydrogen Consumed	_	-		• 4			
C1-C3 40.00 C4 10.00 C5+Gas 20.00	-								
C5+ Gas 20.00 IBP-350F 30.00		C1-C3	40.00						
C5+ Gas 20.00 IBP-350F 30.00		2	10.00						
1BP-350F 30.00		C5+ Gas	20.00						
	•	1BP-350F	•.				Section of the sectio		

197 C4-975F 198 CA-PATRIC & HT CALL DEWAKING & HT		-	2	3	4	2	9	7	8
F Coal IBP-350F 350-500F 500-650F 650-850F 850-975F 9.55 0.00 13.20 52.50 32.30 2.00 7.44 0.00 0.00 9.70 81.80 8.50 4.48 0.00 0.00 9.70 81.80 8.50 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.19 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 1.00 0.00									
F Coal IBP-350F 350-500F 500-650F 650-850F 850-975F 9.55 0.00 13.20 52.50 32.30 2.00 7.84 0.00 0.00 9.70 81.80 8.50 4.48 0.00 0.00 0.00 0.00 0.00 0.10 1.00 0.00 0.00 0.00 0.00 0.19 1.00 0.00 0.00 0.00 0.00 0.29 1.00 0.00 0.00 0.00 0.00 0.29 1.00 0.00 0.00 0.00 0.00 2.25 0.58 3.90 2.293 68.12 6.72 10.2 2.41 0.00 2.56 19.05 7.230 8.50 10.2 0.67 1.13 3.069 4.83 -2.16 60 0.67 1.14.78 11.308 31.57 1.68 -2.69 59 1.08 1.565 1.30 0.00 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
9.55 0.000 13.20 52.50 32.30 2.00 7.64 0.00 0.00 9.70 81.80 8.50 4.48 0.00 0.00 9.70 81.80 8.50 0.10 100.00 0.00 0.00 0.00 0.00 2.29 1.00.00 0.00 0.00 0.00 0.00 2.25 0.58 1.00.00 0.00 0.00 0.00 2.25 0.58 1.34 3.88 4.18 7.21 102 2.41 0.00 2.58 1.95 7.230 8.50 1.02 2.41 0.00 2.58 1.95 7.24 8.75 1.02 2.41 0.00 2.28 8.81 4.83 -2.16 8.0 3.51 1.478 1.236 30.69 4.83 -2.16 8.0 4.03 1.565 1.308 31.57 1.68 -2.69 5.9 5.5 88.56 1.74	,		WF Coal	္က	0-500	0-65	∷ഗ	50-975	
7 64 0.00 9.70 81.80 8.50 4 48 0.00 0.00 9.70 81.80 8.50 0.10 100.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.29 100.00 0.00 0.00 0.00 0.00 2.29 100.00 0.00 0.00 0.00 0.00 2.29 3.90 22.93 68.12 6.72 102 2.25 1.34 3.88 -4.18 -1.78 -0. 0.07 2.56 19.05 72.30 8.50 102 0.07 1.4.13 3.88 -4.18 -1.78 -0. 0.07 1.4.18 3.88 -4.18 -1.78 -0. 0.08 1.2.2 3.88 -4.18 -1.78 -0. 0.09 1.2.3 3.0.89 4.83 -2.16 60. 0.09 1.2.68 1.89		DW-HT VSOH-1	29.55	0	13.20	N	N	2	
4.48 0.00 0.00 19.10 72.40 8.50 0.10 0.00 0.00 0.00 0.00 0.19 1.00 0.00 0.00 0.00 0.29 1.00 0.00 0.00 0.00 2.25 0.58 3.90 22.93 68.12 6.72 102 2.25 0.58 1.34 3.88 -4.18 -1.78 -0. 0.67 1.34 3.88 -4.18 -1.78 -0. 0.67 1.4.21 11.02 26.81 9.01 -0.38 60 0.67 1.4.21 11.02 26.81 9.01 -0.38 60 -0. <td< td=""><td>-</td><td>DW-HT VSOH-2</td><td>67.64</td><td>0</td><td>00.0</td><td>9.70</td><td>81.80</td><td></td><td></td></td<>	-	DW-HT VSOH-2	67.64	0	00.0	9.70	81.80		
0.10 100,00 0.00 0.00 0.00 0.19 100,00 0.00 0.00 0.00 0.29 100,00 0.00 0.00 0.00 2.25 0.58 3.90 22.93 68.12 6.72 102 2.25 0.58 3.90 22.93 68.12 6.72 102 2.41 0.00 2.56 19.05 72.30 8.50 102 2.41 0.00 2.56 19.05 7.17 -0.38 60 0.67 14.21 11.02 2.681 9.01 -0.38 64 0.51 14.78 12.36 30.69 4.83 -2.16 60 0.51 14.78 13.08 32.48 5.11 -2.28 64 4.03 15.65 13.08 31.57 1.68 -2.69 59 5.54 88.76 9.30 0.62 0.21 0.12 0.00 6.19 88.86 17.34		Unrefined Wax	4	0	00.0	19.10	72.40		
0.19 100.00 0.00 0.00 0.00 0.29 100.00 0.00 0.00 0.00 2.25 0.58 3.90 22.93 68.12 6.72 102 2.41 0.00 2.56 19.05 72.30 8.50 102 2.41 0.00 2.56 19.05 72.30 8.50 102 0.67 14.21 11.02 26.81 9.01 -0.38 60 0.67 14.21 11.02 26.81 9.01 -0.38 60 0.67 14.21 11.02 26.81 9.01 -0.38 64 0.51 14.78 12.36 32.48 5.11 -2.28 64 4.03 15.65 13.08 31.57 1.68 -2.69 59 5.04 88.99 10.74 0.00 0.00 0.00 0.00 6.10 88.60 17.34 0.00 0.00 0.00 0.00 6.29		0.4 4.0	0.10	100	00.0	00.0	00.0		
0.29 100.00 0.00 0.00 0.00 2.25 0.58 3.80 22.93 68.12 6.72 102 2.41 0.00 2.56 19.05 72.30 8.50 102 2.41 0.00 2.56 19.05 72.30 8.50 102 2.41 0.00 2.56 19.05 7.178 -0.03 10.2 0.51 14.21 11.34 3.88 -4.18 -2.16 6.0 0.51 14.21 12.36 30.69 4.83 -2.16 6.0 0.52 13.08 31.57 1.68 -2.69 59 -Coal C H O N S 6.4 6.30 15.65 13.08 31.57 1.68 -2.69 59 -Coal C H O O 0.21 0.12 0.12 6.19 85.86 17.34 0.09 0.00 0.00 0.00 0.00 <td></td> <td>C5+ Gas</td> <td>0.19</td> <td>100</td> <td>00.0</td> <td>00.0</td> <td>00.0</td> <td></td> <td></td>		C5+ Gas	0.19	100	00.0	00.0	00.0		
2.25 0.58 3.90 22.93 68.12 6.72 102 2.41 0.00 2.56 19.05 72.30 8 50 102 2.16 1.34 3.88 -4.18 -1.78 -0 0.67 14.21 11.02 26.81 9.01 -0 38 60 0.51 14.21 12.36 30.69 4.83 -2.16 60 0.51 14.21 12.36 30.69 4.83 -2.16 60 4.03 15.65 13.08 32.48 5.11 -2.28 64 9.30 15.65 13.08 31.57 1.68 -2.69 59 F.64 89.76 9.30 0.62 0.21 0.12 0.10 82.66 17.34 0.00 0.00 0.00 0.10 83.81 17.34 0.00 0.00 0.00 0.10 83.81 16.00 0.00 0.00 0.00 0.21 89.33 0.44 0.19 0.12 0.12 0.22 89.33			0.29		00.0	00.0	00.0		
2.41 0.00 2.56 19.05 72.30 8.50 102 0.67 1.34 3.88 -4.19 -1.78 -0 0.67 14.21 11.02 2.6.81 9.01 -0.17 60 0.51 14.21 11.02 2.6.81 9.01 -0.16 60 0.51 14.78 12.36 32.48 5.11 -2.28 64 4.03 15.65 13.08 31.57 1.68 -2.69 59 5.Coal C H O N S 64 9.30 16.74 O 0.00 0.12 59 7.64 89.76 9.30 0.62 0.21 0.12 4.48 85.86 13.22 0.59 0.21 0.12 0.19 83.81 16.19 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100 2.25 89.33 9.92 0.44 0.19 0.12 100	<u>. </u>		102.25	0	3.90	22.93	68.12		N
0.16 0.58 1.34 3.88 -4.18 -1.78 -0.50 0.67 14.21 11.02 26.81 9.01 -0.38 60 0.51 14.21 11.02 26.81 9.01 -0.38 60 0.51 14.78 12.36 30.69 4.83 -2.16 60 4.03 15.65 13.08 31.57 1.68 -2.69 59 9.30 15.65 13.08 31.57 1.68 -2.69 59 9.55 88.99 10.74 0.00 0.12 0.12 0.12 9.55 88.99 13.22 0.59 0.21 0.12 0.00 9.19 82.66 17.34 0.00 0.00 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 0.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100		2	102.41	0	2.56		72.30		ব
0.67 14.21 11.02 26.81 9.01 -0.38 80 0.51 14.78 12.36 30.69 4.83 -2.16 80 4.03 15.65 13.08 32.48 5.11 -2.28 64 9.30 15.65 13.08 31.57 1.68 -2.69 59 6.0sl C H O N S 59 7.64 89.76 9.30 0.62 0.12 0.12 7.64 89.76 9.30 0.62 0.21 0.12 6.10 82.66 17.34 0.00 0.00 0.00 6.19 83.81 16.19 0.00 0.00 0.00 6.29 85.00 15.00 0.00 0.00 0.00 6.29 85.00 15.00 0.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100	<u> </u>		-0.16	0	1.34		-4.18		-0.18
0.51 14.78 12.36 30.69 4.83 -2.16 60 4.03 15.65 13.08 32.48 5.11 -2.28 64 9.30 15.65 13.08 31.57 1.68 -2.69 59 -Coal C H O O O 0.12 59 59 9.55 88.99 10.74 O O O 0.12 0.12 0.12 9.56 85.86 13.22 O 0.62 O 0.12 0.00 0.19 82.86 17.34 O 0.00 0.00 0.00 0.19 85.00 15.00 0 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100		+ LIQUEFACTION	60.67	4		ထ		္ဗက	
4.03 15.65 13.08 32.48 5.11 -2.28 64 9.30 15.65 13.08 31.57 1.68 -2.69 59 5-Coal C H O N S 59 6.55 B8 58 10.74 0.00 0.12 0.12 7.64 89.76 9.30 0.62 0.21 0.12 6.10 82.86 13.22 0.59 0.21 0.12 0.10 82.86 17.34 0.00 0.00 0.00 0.19 85.00 15.00 0.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100		• • • • •	60.51	14.7	က	0		-	
4.03 15.65 13.08 32.48 5.11 -2.28 64 9.30 15.65 13.08 31.57 1.68 -2.69 59 5-Coal C H O N S 59 9.55 88.99 10.74 0.00 0.12 0.12 4.48 89.76 9.30 0.62 0.21 0.12 4.48 85.86 17.34 0.00 0.00 0.00 0.10 82.66 17.34 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100									
9.30 15.65 13.08 31.57 1.68 -2.69 59 59 60 7.64 89.76 9.30 0.62 0.21 0.12 7.64 89.76 9.30 0.62 0.21 0.12 7.64 85.86 13.22 0.59 0.21 0.12 7.64 85.00 15.00 0.00 0.00 7.65 89.33 9.92 0.44 0.19 0.12 100		Total, Wt.% MAF Coal		15.6	0	2.4	5.11	N	4
9.30 15.65 13.08 31.57 1.68 -2.69 59 -Coal C H O N S S 9.55 88.99 10.74 0.00 0.16 0.12 7.64 85.86 13.22 0.59 0.21 0.12 7.10 82.66 17.34 0.00 0.00 0.00 7.29 85.00 15.00 0.00 0.00 7.25 89.33 9.92 0.44 0.19 0.12 100									
F.Coal C H O N S S S S S S S S S S S S S S S S S S		Totalex Wax, Wt. % MAF	59.30	15	· •	31.57	1.68	-2.69	
9.55 88.99 10.74 0.00 0.16 0.12 7.64 89.76 9.30 0.62 0.21 0.12 4.48 85.86 17.34 0.00 0.00 0.00 0.10 82.66 17.34 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100	10		Vt.% MF Coal	:	********* *	0	z	S	
7.64 89.76 9.30 0.62 0.21 0.12 4.48 85.86 17.34 0.00 0.00 0.00 0.19 83.81 16.19 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100	9	• DW-HT VSOH-1	29.55	88			•	0.12	
4.48 85.86 13.22 0.59 0.21 0.12 0.10 82.66 17.34 0.00 0.00 0.00 0.19 83.81 16.19 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100		· DW-HT VSOH-2	67.64	89.7	~~	• .			
0.10 82.66 17.34 0.00 0.00 0.19 83.81 16.19 0.00 0.00 0.29 85.00 15.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100		 Unrefined Wax 	4.48	85	- 01				
0.19 83.81 16.19 0.00 0.00 0.00 0.29 85.00 15.00 0.00 0.00 2.25 89.33 9.92 0.44 0.19 0.12 100.		• C4	0.10	82.6	. ~		0.00		
• IBP-350F Total DW+HT 102.25 89.33 9.92 0.44 0.19 0.12 100.		• C5+ Gas	0.19	83	-		00.0		
Total DW+HT 102.25 89.33 9.92 0.44 0.19 0.12 100.		• IBP-350F	0.29	85.	:0		0.00	• •	
		Total DW+HT	102.25	89.3	တ	4	∶•−	• •	
•	<u>. </u>								
	•								

.*	•						5
	•						
		Wt.% MF Coal			Wt.% MAF Coal		
	LIQUEFACTION	DEWAX & HT	TOTAL		TOTAL		
HZO	12.00		12.81		13.55		
HZS	-0.77		-0.73		-0.77		
CH2	0.60	0	1.02		1.08		
8	1.69	00.0	1.69		1.78		
ထွာ	4.80	0.00	4.80		5.08	C4-975F	
C1-C3	06.6	0.41	10.31		10.92	+Wax	
C4-975F	60.67	4.64	56.04		59.30	64.03	
Unrefined Wax	00.0	4.48	4.48				
Solids Free 975F+	6.73		6.73		7.12		
₩ OI	4.77	00.0	4.77		5.05		horavanananana.
SO3-Free Ash	6.51	0	6.51	Sub-Total	107.84		
	•:		-0.02				
Fe2O3	-1.00	0	-1.00				
Total	105.89	1.51	107.40				
H2CONSUMED	5.89	1.51	7.40		7.83		
75F DIST.	TOTAL C4-975F DIST, Wt.% MF Coal	ပ	"	0	Z	S	Secretaria de Caracteria d Os consecuencios de Caracteria
	1.91	82.66	17.34	00.0	00.0	00.0	
• C5+ Gas	2.18	83.81	16.19	00.0	00.0	0.00	
	• Net SOH Oil 33.93	87.02	12.44	0.29	0.13	0.13	
Recycle DW-HT(P23)	-56.53	90.20	9.34	0.11	0.23	0.12	
• DW+HT C4-975F	102.25	89.33		0.44	0.19	0.12	
975F- in VSB	0.10	90.12	5.93	2.70	0.99	0.26	
• 975F- in PFC	7.33	89.51	8.66	4	0.53	0.15	
DW-HT	Preprepared DW-HT -30.88	88.10	8.47	2.02	0.65	-1	
TOTAL C4 to 975F	A C A	00 0					

ATTACHMENT #3

PRELIMINARY ANALYSIS OF BENCH SCALE RUN ALC-1

TABLE 1 ALC-1: SUMMARY OF LDP MATERIAL BALANCE RESULTS

	CONDITION #1	CONDITION #2	CONDITION #3	CONDITION #4	CONDITION #5
. ::x*	PERIOD #6	PERIOD #13	PERIOD #17	PERIOD #20	PERIOD #25
CATALYST RATE	100%	100%	70%	70%	70%
REACTOR SV	42	3 5	3 4	26	. 29
new Rakitabilin of the Committee	o Agranda de Aerona do Carlo De De Maria. O Agranda de Carlo De Carlo De Maria de Carlo De Maria de Carlo De Maria de Carlo De Carlo De Maria de Carlo D	e i di kumati mereke di kaci i s S	garan da karan da 19 da karan da 19 da Najaran	in the second of	
AS-IS BALANCES	, and the second se	i de la companya de Esta de la companya		etter († 1907) 1 de januarie - Propinsi Propinsi († 1907) 1 de januarie - Propinsi Propinsi († 1907)	
• ASH	96.8	98.3	98.6	101.7	92.5
• CARBON	98.5	100.3	97.1	98.0	97.7
MAF COAL CONVIN	95.2	97.7	97.4	97.3	94.7
NET YIELDS w%MAF	en e	i Tarang Managaran Sangaran	#. #		I/C DW & HT
• COx	5.9	2.8	4.5	4.3	5.9
• C1-C3	10.1	12.5		13.0	10.9
• C4-975F	67.0	55.2	60.2	64.5	64.0
• SF 975+	5.6	16.0	11.0	5.0	7.1
• QI	12.1	7.3	7.1	7.3	11.9
• H2 CONSUMED	7.0	6.7	6.8	7.4	7.8
• NET 650-850F	16.7	12.5	15.7	16.7	5.1
• NET 850-975F	0.5	-1.7	-4.7	-7.3	-2.3
% SOLIDS IN 975F+	68.5	31.4	39.2	59.5	62.6
EST'D NET C4-975F			· ·		•
• % H	11.4	11.5	11.5	11.8	12.9
• % O+N+S	1.3	2.9	2.4	1.9	0.0
		and the second s	The state of the	•	
			:		

TABLE 2 CAER ADVANCED CONCEPTS PROGRAM BENCH RUN ALC-1 USE OF DI-TERTIARY-NONYL POLYSULFIDE (TNPS)

CHEMICAL COMPOSITION: C9H19 - Sx - C9H19 (37% Sulfur, Min.)

USAGE RATE: APPROX. 8.1% ON MF COAL NEEDED TO ACHIEVE TARGETED 3.0% SULFUR ON MF COAL

ACCOUNTING FOR TNPS IN MATERIAL BALANCES:

• Assumed Reaction:

C9H19 - S4.66 - C9H19 + 5.66H2

 $4.66H_2S + 2(C_9H_{20})$

2.82 lb H added/100lb TNPS 0.23 lb H added/100lb MF Coal

• Assumed C9H20 Product (5% on MF Coal) Subtracted From SOH Oil

CONCLUSION: USE OF TNPS MAY HAVE SIGNIFICANT IMPACT ON

NET YIELDS OF HYDROCARBON GASES &

IBP-350'F FRACTIONS

RECOMMENDATION: ELIMINATE/REDUCE USE OF TNPS

- Options:
 - 1. Install 2nd H2S System
 - 2. Use DMDS
 - 3. Don't Use Interstage Separator: Adjust H2 Feed Rate To Maintain

Desired H₂ Partial Pressure

4. Eliminate or Significantly Reduce Sulfur Addition to 2nd Stage

TECHNICAL DATA

ATOCHEM NORTH AMERICA, INC. • Organic Chemicals Division • Three Parkway - Philadelphia - Pennsylvania 19102 01490

DI-TERTIARY-NONYL POLYSULFIDE (TNPS) C. H10 S. C. H10 S. C. H10 S. C. H10 Isomers

SPECIFICATIONS

Form					•		•			Liquid
Color and Appearance.		• •		•	•	•	•	•	• :• • •	Bright Yellow
ASTM D-1500				•				٠	Maximum	3
Total Sulfur				•		•	•	•	.Minimum	37.0%
Ash										0.01%
Hydrogen Sulfide Test (Lead .	Acetate	;) .	•				•		Negative
Odor									Compa	arable to or less
									Offensive	e than Standard
The above specifications are de	etermine	d accord	ing to	Ator	herr		alvei	-1	methods :	

PROPERTIES

Flash Point, Cleveland Open Cup (*F)	.Minimu	m 300
Flash Point, Pensky Martens Closed Cup (*F)		
Refractive Index		. 1.540 - 1.560
Average Weight, Pounds Per Gallon		
Coefficient of Cubical Expansion/°C		
Fire Point - Open Cup (*F)		. 350
Viscosity at 210°F SUS		
Specific Gravity at 60/60°F		

SHIPPING

Samples and Drums, Cans: Lubricating Oil, NOI, other than petroleum.

Tank Trucks: Lubricating Oil Additive. Tank Cars: Lubricating Oil Additive. Iso Tank: Lubricating Oil Additive.

MISCELLANEOUS

CAS No.: 68425-16-1*

* CAS Number assigned for EPA use in TSCA Chemical Substance Inventory.

(Over)

HEADQUARTERS P.O. Box 59209 Philadelphia, PA 19102

 Technical Literature
 215-587-7722

 Customer Service
 800-628-4453

 Customer Service Fax
 215-587-7875

 Technical Service
 215-587-7710

 Technical Service Fax
 215-587-7887

CANADA P.O. Box 278 Oakville, Ontario Canada, L6J5A3 416-827-9841 FAX: 416-827-7913

TABLE 3 CAER ADVANCED CONCEPTS PROGRAM BENCH RUN ALC-1 VARIABILITY OF SECOND STAGE GAS YIELDS

SECOND STAGE GAS COMES FROM TWO SOURCES

TWO GC RESULTS TAKEN DURING EACH OPERATING PERIOD

OFTEN THESE TWO RESULTS DIFFER SIGNIFICANTLY (e.g. Period 17)

HYDROCARBON GAS YIELD CAN BE SIGNIFICANTLY AFFECTED BY
CHOICE OF GC RESULT USED IN MATERIAL BALANCE CALCULATION

RECOMMENDATION: SEPARATELY MEASURE AND ANALYZE EACH
SOURCE OF GAS FROM SECOND STAGE

HYDROCARBON RESEARCH INC. ANALYTICAL LABORATORY

HEWLETT-PACKARD GAS ANALYSIS Model 5890A ************

UNIT: 227 RUN: 94 PERIOD NO: 17 DATE: 05/06/96

	DATA WITH N2 &	02	DATA VI	THOUT N2	& 02
•	VOL% VOL%		VOL%	VOL%	VOLW
period-Type	B/OVHD A/BTMS	B/BTMS	B/OVHD	A/BTMS	B/BTMS
Hydrogen	90.750 75.810	88.040	91.500	86.502	92.450
Methane	2.110 2.880	1.760	2.127	3.286	1.848
Ethylene	0.030 0.000	0.000	0.030	0.000	0.000
Ethane	0.940 1.390	0.850	0.948	1.586	0.893
Propene	0.080 0.000	0.000	0.081	0.000	0.000
n-Propane	0.750 1.430	0.850	0.756	1.632	0.893
Butenes	0.070 0.000	0.000	0.071	0.000	0.000
n-Butane	0.290 0.530	0.310	0.292	0.605	0.326
i-Butane	0.000 D.000	0.000	0.000	0.000	0.000
Pentenes	0.000 0.000		0.000	0.000	0.000
n-Pentane	0.110 0.160	0.100	0.111	0.183	0.105
i-Pentane	0.070 0.090	0.050	0.071	0.103	0.053
MeCyclo C5	0.010 0.000	0.000	0.010	0.000	0.000
Cyclo C6	0.010 0.250	0.060	0.010	0.285	0.063
n-Hexane	0.040 0.100	0.030	0.040	0.114	0.032
Me-Pentane	0.020 0.010	0.000	0.020	0.011	0.000
C6 and C7	00.00、 0.000	0.000	0.000	0.000	0.000
CO	0.480 0.020	0.020	0.484	0.023	0.021
CO2	1.240 0.180	0.070	1.250	0.205	0.074
H2S	2.180 4.790	3.090	2.198	5.466	3.245
Nitrogen	0.650 12.100	4.550			
Oxygen .	0.170 0.260	0.220			
tal	100.000 100.000	100.000	100.000	100.000	100.000
tal C1-C3	3.710 5.700	3.460	3.942	6.504	3.633
tal C4-C7	0.620 1.140	0.550	0.625	1.301	0.578
ta1 CO+CO2	1.7,20 0.200	0.090	1.734	0.228	0.095
S	2.180 4.790	3.090	2.198	5.466	3.245
lculated					
lecular wt	4.889 9.022	5.487	4.691	6.332	4.349

TABLE 4 CAER ADVANCED CONCEPTS PROGRAM BENCH RUN ALC-1 COMMENTS ON MATERIAL BALANCE CONDITION #1 (Period #6)

- SOH OIL RATE 50% HIGHER IN PERIOD#6 VS PERIOD #5.
- MAIN RECYCLE STREAM IS PFL WITH UNDESIRABLY LOW 425'F IBP.
- YIELD OF SOLIDS FREE 975 F+ IS VERY SENSITIVE TO SF 975 F+ CONTENT OF VSB. VSB COMES FROM TWO SOURCES (Toluene Solubles from PFC Extraction & Topped PFL).
- WATER YIELD & HYDROGEN CONSUMPTION MAY BE HIGHER THAN INDICATED DUE TO EXTREMELY HIGH 15.3% OXYGEN (By Diff.) in PFC.

Run ALC-1 (227-94) Condition 1 Preliminary Results

DATE PERIOD	19-Apr-96	20-Apr-96	21-Apr-96	22-Apr-96	23-Apr-96	24-Apr-96
Coal Type or Bag #'s	Raw Coal	Raw Coal	Raw Coal	Raw Coal	Raw Coal	Raw Coal
FFF00						
FEEDS, gms COAL: Black Thunder Was Old Agg Oll Wash Oll FF4	25845	33 810	34770	35562	31386	35303
₹F5				44.45		
Molyvan - A Fe - based Catalyst	10.12 2947	10.63 30 97	10.89 3172	11.15 32 49	9.92 2890	11.13 32 42
H2S TNPS	915 2469	90 8 26 67	8 87 26 61	90 3 25 55	8 89 26 59	1012 2723
Make-up Oil VSB VSOH2	1787	5399	6689	2788	10253	9215
VSOH1 975F-VSOH						
ASOH INTERSTAGE						
SOH - OIL SOH - H2O						
PFL	53280	41793	42107	46626	30107	35020
PFC		2288	1904	2756	6726	863 8
Water	9269	650 8	8462	85 67	8778	8 916
Hydrogen Feed	7072	70 67	70 73	7068	705 5	70 62
TOTAL FEED	103594	105547	107736	110084	100753	111142
Products, gms						
Hydrogen in Product Gases Product Gas (hydrogen & nitrogen free VSB	6 076 8 399	4238 820 6	4440 693 6	48 57 6 472	4596 7901	4653 62 85
VSOH2 VSOH1 \$75F-VSOH						
ASOH Interstage		4143	13929	6077	1428	
SOH - OIL	10444	15769	926 8	8823	9035	14794
SOH - H2O	14265	19711	20138	26114	20 873	18701
PFL PFC	61620	44801	44496	459 52	43402	50113
PFC	2 602	4760	4357	543 9	10349	13215
TOTAL PRODUCTS	103406	101629	103564	103744	9 7584	1077 61
RECOVERY, W%	9 9.82	96.29	9 6.13	94.24	9 6.86	96.9 6
FEED STREAM RATIO'S (to MF Coal)						
PFL+PFC+VSB+VSOH+Makeup+Agg. Oil	2.32	1.60	1.60	1.61	1.63	1.63
IOM & ASH in PFC FEED, %	4.40	6.08	5.20	6.50	19.07	22.71
Metered H2 Cons., W% maf coal	4.46	9.77	8.85	7.22	9.07	7.92
UN-NORMALIZED GAS YIELDS, W% mai co K-1 & K-2: C1-C3 Gas Yield	15.72	15.63	11.94	10.97	14.74	9.94
K-1 & K-2 : C4-C7 Gas Yield	10.78	5.70	5.44	5.0 5	5.40	4.88
K-1 & K-2 : COx Gas Yield	11.15	7.02	5.94	5.21	8.00	5.84
K-1: C1-C3 Gas Yield	7.19	5.19	4.58	4.83	5.72	4.84
K-1: C4-C7 Gas Yield	4.65	1.92	1.70	3.19	3.39	2.84
K-1: COx Gas Yield	10.24	5.9 5	5.11	4.72	7.44	5.32
Dry Coal Feed, gms	23762	30 845	316 97	32468	28884	32405
Calculated Coal Moisture Content, W%	8.06	8.77	8.84	8.70	7.9 7	8.21
Coal conversion, SO3 free		93.38	93.99	9 5.14	9 5.44	94.96

Figure 3

<u>DOWNSTREAM PRODUCT FLOW SCHEME</u>

Condition 1

TABLE 5 CAER ADVANCED CONCEPTS PROGRAM BENCH RUN ALC-1 COMMENTS ON MATERIAL BALANCE CONDITIONS #2, #3 & #4 (Periods #13, #17 & #20)

- HYDROGEN CONTENT OF AGGLOMERATED COAL HIGHER THAN CALCULATED FROM RAW COAL AND AGGLOMERATING OIL.
- EFFECT OF EXTERNAL AGGLOMERATING OIL ON YIELDS UNCERTAIN
- UNABLE TO REMOVE EQUIVALENT AGGLOMERATING OIL BOILING RANGE MATERIAL FROM SYSTEM DUE TO FRONT END MIXING CONSTRAINTS.
- NEGATIVE 850-975°F YIELD FOR ALL THREE CONDITIONS
- COAL CONVERSION:
 - 2 TO 3% HIGHER THAN WITH REGULAR COAL
 - NO SIGNIFICANT EFFECT OF REDUCED CATALYST RATE OR REDUCED SPACE VELOCITY
- SURPRISING COMPARATIVE RESULTS BETWEEN CONDITIONS #2 & #3. DESPITE HIGHER CATALYST FEED RATE CONDITION #2 HAD LOWER DISTILLATE AND HIGHER SF 975 F+ YIELDS. THESE ANOMALOUS DIFFERENCES MAY BE DUE TO UPSET IN VACUUM STILL OPERATION PRIOR TO PERIOD #13.
- YIELD TRENDS AS EXPECTED WHEN SPACE VELOCITY LOWERED (CONDITION #4 VS #3).
- DISTILLATE PRODUCT QUALITY ALSO IMPROVED AT LOWER SV.
- COx YIELD IN CONDITION #2 (Period #13) IS SIGNIFICANTLY LOWER THAN IN PRECEDING PERIODS OF SAME CONDITION.

Run ALC-1 (227-94) Condition 2 Preliminary Results

DATE PERIOD	25-Apr-96	26-Apr-96	27-Apr-96	28-Apr-96	29-Apr-96	30-Apr-96	01-May-96
Coal Type or Bag #'s	BAG C2	BAG C2 & C3	BAGCILCA	10 BAG C4 & C5	BAG C5	12 BAG C5 & C6	13 BAG C6 & C7
FEEDS, gms							
COAL: Black Thunder	33715	33417	29040	28109	25208	27280	27998
Was Old Agg Oil							2.000
Wash Oil				4892	1462		
FF4							
FF5							
Molyvan - A	10.57	10.53	9.40	9.00	8,10	8.81	9.20
Fe - based Catalyst	3 079	3064	2699	2585	2324	2530	2644
H2S	8 28	981	960	915	847	908	872
TNPS	2639	2586	2442	2120	2107	2048	2129
Agglomerating Oil VSB	10778 1614	10531 3943	9 213 22 676	88 25 2172 0	7885 1 9 524	8 593 20 988	9109
VS 0H2	25572	3543	2437	26 26	9815	20300 3554	21897 3074
VSOH1 .	23312		2-01	2020	-0.5	3334	30/4
\$75F-VSOH					•		
ASOH							
INTERSTAGE							
SOH - OIL							
\$0 H - H20							
PFL	4156	22504					
PFC	9243	12103	9157	8771	7884	8584	9084
Water	664 8	6154	7241	7123	6915	7014	7651
Hydrogen Feed	7074	7 076	7 071	7061	7071	7074	7073
TOTAL FEED	105356	102369	829 45	94757	9 1050	88582	91540
Products, gms				•			
Hydrogen in Product Gases	4610	4597	4357	4695	4803	4743	4699
Product Gas (hydrogen & nitrogen free)	6169	5677	5727	53 58	5 756	5 167	5342
VSB			33434	27309	26421	27825	32233
VSOH2			9170	14716	198 94	12628	9715
VSOH1							
975F-VSOH							
ASOH INTERSTAGE	201						
SOH - OIL	304 10054	11601	10027	8465	8485	8 538	9 314
SOH - H2O	19183	19067	17460	18838	15593	15720	15822
PFL PFL	52213	45516	17400	19630	13333	15/20	13622
PFC	13040	1 5 065	11986	11683	10402	10728	12537
	150-15		1,555	1,000	10-102	10/20	12001
TOTAL PRODUCTS	105574	101523	92161	91064	91354	853 49	89661
RECOVERY, W%	100.21	9 9.17	9 9.16	96.10	100.33	9 6.35	97.95
FEED STREAM RATIO'S (to MF Coal)							
PFL+PFC+VSB+VSOH+Makeup+Agg. Oil	1.63	1.60	1.60	1.60	1.94	1.65	1.61
IOM & ASH in PFC FEED, %	17.49	24.97	18.53	18.31	21.32	20.01	18.73
Metered H2 Cons., W% maf coal	8.10	8.36	10.36	9.34	10.12	9.54	9.17
UN-NORMALIZED GAS YIELDS, W% mail coal							
K-1 & K-2 : C1-C3 Gas Yield	80.9	9.13	10.74	11.37	14.56	11.60	12.59
K-1 & K-2 : C4-C7 Gas Yield	6.17	5.41	7.03	5.23	5.25	5.38	5.22
K-1 & K-2 : COx Gas Yield	5.04	4.61	4.09	4.56	5.86	4.17	2.81
K-1: C1-C3 Gas Yield	4.99	4.95	4.56	5.71	80.9	5.44	4.07
K-1: C4-C7 Gas Yield	1.70	3.11	3.86	2.38	2.27	1.84	1.71
K-1: COx Gas Yield	4.52	4.20	3.72	4.18	5.33	3.77	2.06
Dry Coal Feed, gms	31435	30653	27100	26 226	23206	25 280	26786
Calculated Coal Moisture Content, W%	6.76	8.27	6.68	6.70	7.94	7.33	4.33
seine SO2 fran	67.04		67.00		67.00	07.04	97,69
rsion, SO3 free	97.04	97.04	97.98	97.7 9	9 7. 6 6	97.84	3 (,3)

TABLE 6 CAER ADVANCED CONCEPTS PROGRAM BENCH RUN ALC-1 COMMENTS ON MATERIAL BALANCE CONDITION #5 (Period #25)

- DUE TO LONG STARTUP TIME LAG & FILTRATION PROBLEMS, USE OF RECYCLED DEWAXED & HYDROTREATED (DWHT) SOLVENT WAS INFREQUENT.
- RECYCLED DWHT SOLVENT DIFFERED SIGNIFICANTLY FROM PREPREPARED (OLD) DWHT SOLVENT. EFFECT ON YIELDS UNCERTAIN.
- LONG TIME LAG FOR VSB ALSO DUE TO FILTRATION PROBLEMS.
- NO VSB WITHDRAWN FROM SYSTEM (Except for Samples), YET MATERIAL BALANCE SHOWS SIGNIFICANT POSITIVE VSB YIELD. INDICATED SF975F+ YIELD SHOULD BE LOWER.
- NO COAL CONVERSION IMPROVEMENT VS CONDITION #1.
- HIGHER HYDROGEN CONSUMPTION BUT SIGNIFICANTLY IMPROVED DISTILLATE PRODUCT QUALITY VS CONDITION #1.
- FULLY REFINED WAX YIELD WILL BE LOWER THAN "WAX" YIELD INDICATED AS ELEMENTAL ANALYSIS OF "WAX" INDICATES THAT THIS MATERIAL CONTAINS A SIGNIFICANT AMOUNT OF OIL.
- GREATER THAN 1% HYDROGEN ADDED TO C4-975°F PRODUCT IN HYDROTREATING. GAS MAKE APPEARS TO BE LOW & HETEROATOM REMOVAL IS SIGNIFICANT.

Figure 6

DOWNSTREAM PRODUCT FLOW SCHEME
Condition 5

TABLE 7: ALC-1 DEWAXED-HYDROTREATED RECYCLE SOLVENT

		PERIOD #23	PERIOD #25
ELEMENTALS	OLD 650F+DWHT	VSOH-2	VSOH-2
CARBON	88.10	90.20	89.76
HYDROGEN	8.47	9.34	9.30
OXYGEN (Diff)	2.02	0.11	0.62
NITROGEN	0.65	0.23	0.21
SULFUR	0.76	0.12	0.12
understung na 1917 in and 1918		Profesional Augustus (Consultation Consultation)	
CUTS	Bernema (1989) a le la colonidad (1991). Il colonidad (1991) a le la colonidad (1991) Il colonidad (1991) a le la colonidad (1991) a le la colonidad (1991).	en in Merck The West State of the State of t	
500-650F	3.90	4.80	9.70
650-850F	87.70	82.70	81.80
850-975	8.40	12.50	8.50
- 14 1 - 15 - 17 - 1741 			
		m jakon kontra	
ortino mover de la companio			

TABLE 8 CAER ADVANCED CONCEPTS PROGRAM BENCH RUN ALC-1 PLAN OF FUTURE WORK

- REFINE MATERIAL BALANCES
- PROJECT YIELDS AT STEADY STATE OPERATION
- PREPARE CONCEPTUAL COMMERCIAL PLANT DESIGN INFORMATION
- PERFORM ECONOMIC ANALYSIS OF COMMERCIAL PLANTS
- PREPARE RECOMMENDATIONS FOR FUTURE ALC BENCH RUNS

Run ALC-1 (227-94) Condition 5 Preliminary Results

DATE	09-Ma y-96	10-May-96	11-May-96	12-May-96	13-May-96
PERIOD	21	22	23	24	25
Coal Type or Bag #'s	Raw Coal	Raw Coal	Raw Coal	Raw Coal	Raw Coal
FEEDS, gms					
COAL: Black Thunder	21764	24596	25398	24964	23899
Was Old Agg Oil	21704	24050	2330	24304	23033
Wash Oil					
FF4					
- FF5					
Molyvan - A	5.17	5.64	5.71	5.58	5.38
Fe - based Catalyst	1501	1637	1655	1618	1561
H2S	986	891	910	931	88 9
TNPS	1687	1857	1989	1877	1893
Agglomerating Oil			1000	****	
VSB	10418	10337	7476	7493	6398
DW-HT VSOH2 (Old)	17237	19664	7094	16216	7138
DW-HT VSOH2 (Fresh)			14348	3243 ·	12702
Wax					
DW-HT VSOH1	· · · · · · · · · · · · · · · · · · ·				
DW-HT VSOH2					
SOH - OIL					
SOH - H2O					
PFL					
PFC	6 875	7783	7 871	7695	7420
Water	833 5	83 18	8107	7456	7649
Hydrogen Feed	707 1	7073	70 61	70 67	7069
TOTAL FEED	75 879	82 162	81 915	785 66	76622
Products, gms		_			
Hydrogen in Product Gases	5200	5168	5193	5 317	526 0
Product Gas (hydrogen & nitroge		5203	5448	5527	4285
_VSB	7456	88 28	93 65	8426	72 59
DW-HT VSOH2 (Old)			•		
DW-HT VSOH2 (Fresh)	4000				
Wax	1339	1274	1071	1518	986
DW-HT VSOH1	7176	4770	553 6	6918	6 519
DW-HT VSOH2	15408	1 644 9 1 02 62	1 73 00 87 97	130 54 8 970	14919
SOH - OIL SOH - H2O	8 048				9017
PFL	13837	14150	15234	14712	130 51
PFC	926 0	12683	12391	44960	47207
FFG	3200	12003	12351	11869	12307
TOTAL PRODUCTS	71731	78 787	8033 5	76 312	736 02
IOIAL PRODUCTS	71751	10101	60333	76312	75002
RECOVERY, W%	94.53	95.8 9	98.07	97.13	96.06
100000, 117	6 1.30	50.00		37.13	30.00
FEED STREAM RATIO'S (to MF Coal)					
PFL+PFC+VSB+VSOH+Makeup+Agg. O.	11.64	1.64	1.56	1.50	1.51
IOM & ASH in PFC FEED, %	20.43	22.58	20.05	15.58	17.89
				10.00	****
Metered H2 Cons., W% maf coal	9.46	8.82	8.42	8.06	8.62
UN-NORMALIZED GAS YIELDS, W% ma					
K-1 & K-2: C1-C3 Gas Yield	10.49	12.85	12.55	13.51	9.87
K-1 & K-2: C4-C7 Gas Yield	3.99	4.97	5.52	5.13	4.09
K-1 & K-2: COx Gas Yield	5.79	6.27	6.47	6.83	6.46
K-1: C1-C3 Gas Yield	7.24	5.96	6.53	5.8 6	6.05
K-1: C4-C7 Gas Yield	2.36	2.20	2.23	2.07	2.45
K-1: COx Gas Yield	5.64	5.89	6.14	6.27	6.31
5 6161					
Dry Coal Feed, gms	21061	23014	23643	23114	22362
Calculated Coal Moisture Content, W%	3.2 3	6.43	6.91	7.41	6.43
Carl conversion CC3 from		OE 40	06.06	05.54	0472
Coal conversion, SO3 free	9 6.09	9 5.48	96.26	9 6.64	94.72

Table 15. Properties of Wax Product

Periods	22	23	24	25
Elemental Analysis			•	
Carbon, W%	86.75	8 4.28	81.47	85.8 6
Hydrogen, W%	12.22	12.66	13.09	13.22
Sulfur ,W%	0.328	0.367	0.873	0.309
Nitrogen, W%	0.32	0.25	0.20	0.21
H/C Ratio	1.69	1.80	1.93	1.85
Product Distrubution by (GC&G	C-MS), W%			
C ₁₇ -C ₂₂				24.8
C ₂₃ -C ₃₀				71.9
C ₃₁ -C ₃₆				3.3
524 °C+ Resid Content, W%	1.49	0.28	4.39	3.31